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Abstract. We consider the problem of motion planning in the presence of
uncertain obstacles, modeled as polytopes with Gaussian-distributed faces
(PGDF). A number of practical algorithms exist for motion planning in
the presence of known obstacles by constructing a graph in configuration
space, then efficiently searching the graph to find a collision-free path.
We show that such a class of algorithms is unlikely to be efficient in the
domain with uncertain obstacles. In particular, we show that safe 3D
motion planning among PGDF obstacles is NP−hard with respect to
the number of obstacles, and remains NP−hard after being restricted to
a graph. Our reduction is based on a path encoding of 3−SAT and uses
the risk of collision with an obstacle to encode the variable assignment.
This implies that, unlike in the known case, planning under uncertainty
is hard, even when given a graph containing the solution.

Keywords: Collision Avoidance, Completeness and Complexity, Motion
and Path Planning

1 Introduction

Navigation under uncertainty is one of the most basic problems in robotics.
While there are many methods to plan a trajectory between two points with a
known environment and strong theoretical guarantees, few of them generalize to
obstacles with locations estimated by noisy sensors. It has proven much harder to
provide strong completeness, runtime, and optimality guarantees in this setting.

While some of the original work addressing planning under uncertainty was
able to capture the additional richness of this problem by modeling it as a
partially observable Markov decision process (POMDP) [8], it has proven difficult
to solve POMDPs for complicated real world problems despite large advances in
POMDP solvers [17, 29]. In fact, solving POMDPs is PSPACE-complete in the
finite horizon and undecidable otherwise, suggesting that it likely not possible to
find a general, efficient algorithm for solving POMDPs [21].

Luckily, navigating among uncertain obstacles is a significantly more restricted
problem class than POMDPs, giving us hope that we might find an algorithm that
is efficient in practice and gives strong theoretical guarantees such as completeness
and safety.
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Axelrod et al. proposed solving an approximation of the navigation under
uncertainty problem [4, 3]. Instead of trying to compute a path that minimizes
the true probability of collision under any distribution of obstacles, they propose
solving a restricted problem where the obstacles are limited to a structured class
of distributions and the collision probability is approximated using a shadow
(the geometric equivalent of a confidence interval). While shadow bounds are
inherently loose (they overestimate the probability of collision when the obstacle
is likely to be far away from the estimated location) they greatly decrease the
computational complexity of bounding the probability of collision, since only
space visited by the robot close to the obstacle affects the probability bound.

Axelrod et al. proposed the following question: Is there an efficient algorithm
that, given a graph embedded in Rn and a set of obstacles, can find the path with
minimal risk as computed via a shadow bound [3]? Unlike the original problem
without the shadow approximation, the cost function was only influenced by the
portion of the trajectory close to the obstacle and had submodular structure
with respect to the graph. The fact that similar approximations have worked well
for motion planning, and the existence of efficient algorithms for certain classes
of submodular minimization problems gave the hope that it might be possible to
find an efficient algorithm for this problem as well.

While motion planning is hard in general, practical and efficient algorithms
have proven very successful under some assumptions [18]. One such body of
work are the sampling-based motion-planning methods. These algorithms often
have the assumption that the problem can be split into two pieces: First use a
practically (though often not worst-case) efficient method to generate a small
graph that contains a solution; then use a standard, efficient graph algorithm
to find the solution in this graph. Algorithms based on this scheme have been
successful even for high dimensional planning problems for robots with many
degrees of freedom.

There are several other classes of practically efficient algorithms (including
grid based and optimization-based planners) that rely on the assumption that
part of the problem may be solved much more efficiently in the average case than
in the worst case. We discuss this further in the background section.

This paper answers the question posed by Axelrod et al. in the negative [3].

Theorem 1. Safe path planning in the presence of uncertain obstacles in 3
dimensions is NP-hard.

A more formal statement of this result is presented in Section 3.
The proofs presented in this paper illuminate what makes this problem

more difficult than the standard motion-planning problem with known obstacles.
Searching for the minimum-risk path does not have a Markov-like structure.
Unlike in the shortest-path problem on a graph, the risk of the second half of a
trajectory is very much affected by the first half. This means that the problem is
lacking the Bellman property, as identified by Salzman et al. [26].

The absence of a Markov-like property for the risk over the path seems almost
necessary to capture important parts of the original problem. The probabilities
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that one collides with an obstacle are most certainly correlated across the trajec-
tory since collision is inherently a local property. We further discuss sufficient
properties of the random obstacle model to guarantee hardness in the conclusion.

2 Background

Motion planning for robotics has been extensively studied in many different
settings. One high-level distinction is between motion planning in a known
environment and planning in an environment that is not known.

2.1 Complexity in Motion Planning

The story of motion-planning algorithms in robotics has been one of walking the
fine boundaries of complexity classes. On one hand, motion planning is PSPACE-
hard in R3 [24] and R2 [10, 13] with respect to the number of arms of a robot (and
thus dimension of its configuration space). However, while Canny’s work on singly-
exponential time (with respect to number of arms) roadmaps leads to a polynomial-
time algorithm when the number of arms is fixed [6], a different set of algorithms
is used in practice. The robotics community has been able to find practically
efficient methods that provide meaningful theoretical guarantees weaker than
completeness (finding a solution if one exists). Sampling-based planners such as
Rapidly-Exploring Random Trees (RRTs) [19, 18] and Probabilistic Roadmaps
(PRMs) [16] are both practically efficient and probabilistically complete under
some regularity conditions. Given effective heuristics, graph-based planners have
also proved efficient and provide resolution completeness [18].

Searching for optimal plans, as opposed to simply feasible plans, further
increases the difficulty. In a classic result, Canny shows that the 3-d Shortest-
Path Problem is NP-hard for a simple robot in terms of the number of obstacles [7].
This ruled out results of the form of Canny’s roadmap algorithm that showed
fixed parameter tractability in the feasible motion planning case.

However, the community has been able to find practically efficient algorithms
regardless of these worst-case results. A modified version of the original sampling-
based algorithms allows them to return nearly optimal solutions in the limit
[15] and graph-based planning algorithms are able to provide bounds on the
suboptimality of their solutions [1].

Another motion-planning problem that lacks a Markov property is the min-
imum constraints removal problem, where the objective is to find a path that
collides with the fewest obstacles. This problem was shown to be NP-hard in
Cartesian spaces of dimension 3 [12].

2.2 Planning under Uncertainty

While planning under uncertainty has been broadly studied in robotics, few
methods have formal guarantees on solution quality and efficient runtime. We
survey some of the related work below.
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Many works assume some sort of uncertainty about the environment, but do
not propose a model in which to rigorously quantify the uncertainty in the envi-
ronment and provide guarantees about the success probability of the trajectory.
Instead they often rely on heuristics that seem to provide the desired behavior.
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Fig. 1. The orange set is a
shadow of the obstacle. The
blue set is the obstacle rep-
resented by the mean pa-
rameters.

One line of work focuses on uncertainty in the
robot’s position. Here the model of the robot itself
is “inflated” before the collision checking, ensuring
that any slight inaccuracy in the position estimate or
tracking of the trajectory does not result in a collision.

Work that focuses on uncertainty in the environ-
ment sometimes does the exact opposite. They of-
ten inflate the occupied volume of the obstacle with
a “shadow” and ensure that any planned trajectory
avoids the shadow [14, 20].

A more general approach that handles either or
both of localization and obstacle uncertainty is belief-
space planning. Belief space is the set of all possible
beliefs about or probability distributions over the
current state. Belief-space planning converts the un-
certain domain in state space to belief space, then plans in belief space using
trees [23, 5] or control systems [22].

Another line of work uses synthesis techniques to construct a trajectory
intended to be safe by construction. If the system is modeled as a Markov
decision process with discrete states, a safe plan can be found using techniques
from formal verification [9, 11]. Other authors have used techniques from Signal
Temporal Logic combined with an explicitly modeled uncertainty to generate
plans that are heuristically safe [25].

Recent work by Hauser on the minimum constraints removal problem randomly
samples many draws for each obstacle and finds the path that intersects with
the fewest samples, demonstrating low runtime and error on average although
with poor worst case performance [12].

Shadows In previous work, Axelrod et al. formalized the notion of a shadow
in a way that allowed the construction of an efficient algorithm to bound the
probability that a trajectory will collide with the estimated obstacles [4, 3].

We can now define a shadow rigorously:

Definition 1 (ε-shadow). A set S ⊆ Rd is an ε-shadow of a random obstacle
O ⊆ Rd if Pr[O ⊆ S] ≥ 1− ε.

Shadows are important because they allow for an efficient method to upper-
bound the probability of collision. If there exists an ε−shadow of an obstacle
that does not intersect a given trajectory’s swept volume, then the probability
of the obstacle intersecting with the trajectory is at most ε. An example of a
shadow for an obstacle is shown in figure 1.
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3 Problem Formulation

3.1 Notation

In this section we will cover definitions and notation conventions that will be
used in this paper.

– A vector will be marked in bold as in u, in contrast to a scalar u.
– ∧, ∨, and ¬ are the logical AND, OR, and NOT operators, respectively.
– The power set (set of all subsets) of S is denoted by P(S). A function mapping

into the power set of Rn outputs subsets of Rn.

Definition 2 (Standard Basis Vector). A Standard Basis Vector in d dimen-
sions is a vector ei ∈ Rd that is 1 in the ith dimension and 0 in the remaining
dimensions.

3.2 Random Obstacle Model

In order to attempt to provide formal non-collision guarantees one must first
model the uncertainty in the environment. At a high level we assume that each
episode of the robot’s interaction happens in the following sequence:

1. A set of obstacles is drawn from a known distribution (the conditional
distribution for the obstacles given the sensor observations). These obstacles
now remain static for the duration of the episode.

2. The robot computes, commits to and executes a trajectory.
3. The probability of collision in question is exactly the probability that this

trajectory collides with at least one of the obstacles.

In this work we restrict ourselves to polytopes with Gaussian-distributed
faces (PGDFs). A PGDF is the intersection of halfspaces with parameters drawn
from a multivariate normal distribution. More formally a PGDF O ⊂ Rn is

O =
i⋂
αT
i x ≤ 0, where αi ∼ N (µi, Σi). We can use homogenous coordinates to

create obstacles not centered about the origin.
One reason that PGDF obstacles are important is that we have methods of

computing shadows for PGDF obstacles efficiently [4].
We note that this formulation differs from the notion of “risk-zones” evaluated

by Salzman et al., where the cost of a trajectory is proportional to the amount
of time spent within a risk-zone [27, 26]. These problems share the lack of
an optimal substructure—the subpaths of an optimal path are not necessarily
optimal. Salzman et al. provide a generalization of Dijkstra’s algorithm that finds
minimum-risk plans in their domain efficiently [26], but as we will show, there
are no such techniques for our problem.
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3.3 Algorithmic Question

Now that we have defined shadows and PGDF obstacles, we can define what it
means for a path to be safe. Suppose the robot operates, and obstacles are, in
Rd (d is usually 3). This is commonly referred to as the task space. Furthermore,
suppose the configuration space of the robot is parametrized in Rk (usually
corresponding to the k degrees of freedom of the robot).

Since planning usually happens in the robot’s configuration space, but the
obstacles are in task space, we need to be able to convert between the two.

Definition 3 (Embedding Map). A function f : Rk → P(Rd) is an embedding
map if it maps robot configurations into the subset of Rd that is occupied by the
robot at that configuration.

The embedding map can usually be constructed by combining the forward
kinematics and robot model.

Definition 4 (Configuration Space Trajectory). A configuration space tra-
jectory τ : [0, 1] → Rk is a map from a “time” index into the trajectory to the
robot configuration at that point in the trajectory.

Definition 5 (Task-space Trajectory). A task-space trajectory τ ′ : [0, 1] →
P(Rd) is defined as the map between an index into the trajectory and the space
occupied by the robot at that point in the trajectory.

Alternatively, if given a configuration space trajectory τ , τ ′(t) = f(τ(t)) where
f is the embedding map.

For the rest of the paper we will only concern ourselves with task-space
trajectories, noting that it is easy to go from a configuration space trajectory to
a task-space trajectory using the embedding map.

Definition 6 (Swept Volume). The swept volume X of a task-space trajectory
τ is the set of task-space points touched by the robot while executing trajectory τ .

Said differently, X =
⋃

t∈[0,1]
τ(t).

This allows us to formally define what it means for a trajectory to be safe.

Definition 7 (ε-safe trajectory). Given a joint distributions over random
obstacles, a task-space trajectory is ε-safe if the corresponding swept volume has
at most ε probability of intersecting at least one obstacle.

This leads to the following algorithmic question, of finding safe plans for a
known distribution of PGDF obstacles.

Problem 1 (ε-safe Planning Problem) Given the parameters of PGDF
distributions for each obstacle and initial and end points s, t in configuration
space, find an ε-safe trajectory from s to t.
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Note that there exists reductions between the safe planning problem and
finding a path that minimizes the risk of collision. Since the probability ε is
confined to [0, 1], a binary search over ε yields an efficient algorithm that can
approximately compute the minimum risk given an ε−safe planner. For conve-
nience, our proofs will consider the approximate minimum-risk planning problem,
though the construction applies directly to ε−safe planning as well.

Problem 2 ((1 + α)-approximate minimum-risk planning problem)
Given the parameters of PGDF distributions for each obstacle and initial
and end points s, t in configuration space, return a ((1+α)ε∗)-safe trajectory
from s to t, where ε∗ is the minimum ε for which an ε-safe trajectory exists.

3.4 Graph Restriction

We start by considering the class of motion-planning algorithms that first con-
struct a graph embedded in the robot’s configuration space, and then run a
graph-search algorithm to find a path within the graph. This class of algorithms
has been shown to be practical in the known environment, with sampling-based
planners such as RRT and RRG. Conditioned on there being a nonzero probability
of sampling a solution, these algorithm are guaranteed to find a collision-free path
with probability approaching 1 as the number of iterations approaches infinity.
[19, 15].

More formally this condition can be articulated as the existence of a path in
the δ-interior of the free space Xfree.

Definition 8 (δ-interior [15]). A state x ∈ Xfree is in the δ-interior of Xfree

if the closed ball of radius δ around x lies entirely in Xfree.

This condition is necessary because it guarantees that finding a plan does not
require waiting for a zero probability event. However this formulation does not
extend well to the domain with uncertain obstacles; there is no concept of “free
space” because the locations of the obstacles are not known. Instead we will use
the equivalent view of inflating the path instead of shrinking the free space.

Definition 9 (δ-inflation). The δ-inflation of the set X is the set Y =
⋂

x∈X
{y |

d(x, y) ≤ δ}.

We note that in the deterministic setting, if a trajectory is in the δ-interior
of Xfree, then the δ-inflation of the trajectory is entirely in Xfree. This allows
us to consider problems with the following regularity condition: there exists a
δ-inflated task-space trajectory that has a low risk of collision.

Definition 10 (ε-safe δ-inflated task-space trajectory). A task-space tra-
jectory is an ε-safe δ-inflated trajectory if its δ-inflation intersects an obstacle
with probability at most ε.

We want to find an algorithm that satisfies the completeness and safety
guarantees defined below.
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Definition 11 (Probabilistically Complete (1+α)-approximate Safe Plan-
ning Algorithm). A planning algorithm takes a set of PGDF obstacles, a start
state s, and a goal state t as input and generates a path as output. A planning
algorithm is probabilistically complete and (1 + α)-approximate safe if, with n
samples, the probability that it finds a ((1 + α)ε∗)-safe trajectory approaches 1 as
n approaches ∞, where ε∗ is the minimum ε for which an ε-safe trajectory exists.

Axelrod et al. provides an extension of the RRT algorithm to the probabilistic
domain using the shadow approximation [4]. The uniqueness of paths between
any two vertices in a tree makes finding the optimal (restricted to the tree) path
trivial. However, while the paths it generates are indeed safe, the algorithm is
not probabilistically complete.

The following extension of the RRG algorithm is probabilistically complete
[2].

Algorithm 1 SAFE RRG

Input: End points s, t ∈ Rd, set of PGDF obstacles O, and number of samples n.
Output: A ((1+α)ε∗)-safe trajectory from s to t, where ε∗ is the minimum ε for which

an ε-safe trajectory exists.
1: G = CONSTRUCT RRG(s, t, n)
2: return GRAPH SEARCH(G,O, s, t)

We note that as n increases, the probability that there is a sample near
any given point x in the space approaches 1. Here, GRAPH SEARCH is a
(1 + α)-approximate safe graph-search algorithm as defined below.

Definition 12 ((1+α)-approximate safe graph-search algorithm). A (1+
α)-approximate safe graph-search algorithm is a procedure φ(G,O, s, t), where
G is a graph, O is a set of PGDF obstacles, and s and t are the start and end
nodes in G, respectively. It returns a ((1 + α)ε∗)-safe trajectory in G, where ε∗ is
the minimum ε for which an ε-safe trajectory exists.

Theorem 2 ([2]). SAFE RRG is probabilistically complete and (1+α)-approximate
safe as long as GRAPH SEARCH is complete and (1 + α)-approximate safe.

However, no graph-search procedure, beyond the näıve, exponential-time search
procedure, is provided [2]. Sampling-based motion-planning algorithms succeed
in the known environment because efficient graph-search algorithms can quickly
find collision-free paths within a graph. In order for this class of motion-planning
algorithms to be practical, we would need a corresponding graph-search algorithm
in the probabilistic domain. Because the cost of a path depends on what set of
shadows it intersects, the state space of the graph search is not just the current
node but also includes the accumulated risk incurred by each obstacle. This
means that the typical approaches for searching graphs with known obstacles,
which make use of dynamic programming, cannot be applied in the same manner
to graphs with unknown obstacles.

Unfortunately, as will be shown in the remainder of this paper, this problem
is NP-HARD with respect to n = Θ(|G|+ |O|), the size of the input.
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Theorem 3. Unless P = NP , there is no (1 + α)-approximate safe graph-
search algorithm that, given a graph with n nodes, runs in POLY (n) time, when
restricted to O(n) obstacles in RO(n), where α = Θ( 1

n ).

And we can strengthen it to show that the minimum-risk planning problem
in constant dimension is hard in general, that is, even when not restricted to a
graph.

Theorem 4. The (1 + α)-approximate minimum-risk planning problem is NP-
hard. That is, unless P = NP , there is no (1 + α)-approximate Safe Planning
Algorithm for R3 that runs in POLY (n) when α = Θ( 1

n ), even when provided a
graph containing the solution.

4 Basic Hardness Result

4.1 3SAT

3SAT is an NP-complete problem that is commonly used to prove the hardness of
other problems [28]. The problem input is a Boolean formula given in conjunctive
normal form, where each clause consists of three literals, or in other words, it is
of the form ((x0 ∨ ¬x1 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ . . .). The algorithm must then
decide whether there exists any variable assignment that satisfies the formula. We
will consider a 3SAT problem with k variables x0, x1, . . . and m clauses, where
each clause j is of the form (xju ∨ ¬xjv ∨ xjw).

4.2 Proof Outline

We prove Theorem 3 using a reduction from 3SAT. Given a 3SAT instance, we
construct a (1 + α)-approximate safe graph-search problem as follows.

1. Construct a pair of obstacles for each variable that will encode whether the
variable is set to true or false.

2. Construct a portion of the graph to force the algorithm to assign every
variable by going near either the true or false obstacle for each variable.

3. Construct the remainder of the graph to force the algorithm to satisfy every
clause. There will be additional collision risk for a path that goes by both
the true and false obstacles (i.e. uses both x and ¬x).

The solution to the planning problem can then be transformed into a solution to
the 3SAT instance in polynomial time, demonstrating that the (1+α)-approximate
safe graph-search problem is at least as hard as 3SAT.

The proof for R3 will use a similar technique with a more complicated
construction that folds the graph into R3.

4.3 Proof
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x

¬x

Fig. 2. A path
through this gadget
must select one of
the obstacles to
go near, either the
positive assignment
x (obs2i) or the
negative assignment
¬x (obs2i+1).

Our graph and obstacle set will be in space Rd where
d = k + 1. Each of the first k dimensions will correspond
to each variable, and dimension t = k + 1 can be thought
of as “time” or some monotonically increasing value as we
progress along a path.

Variable Assignment First, for each variable i in the
3SAT problem, we will construct two halfspace PGDF
obstacles.

Note that we define a PGDF obstacle as the intersec-
tion of halfspaces of the form αTx ≤ 0 for α normally
distributed and x represented in homogeneous coordinates.
Here we will work with just one face and standard coor-
dinates for convenience.

That is, each obstacle i will be defined as αT
i x ≤ 1 for

α ∼ (µi, Σi).
For each variable i we define a true obstacle and a

false obstacle with the the following parameters; true:
α ∼ N (2ei, eie

T
i ), false: α ∼ N (−2ei, eie

T
i ).

jet (j + 1)et

(j + 1
2 )et ± eju

(j + 1
2 )et ± ejv

(j + 1
2 )et ± ejw

Fig. 3. A path through this gadget
must take one of three paths, each ex-
tending in different dimensions. Each
path goes near an obstacle correspond-
ing to the respective literal.

Intuitively the covariance eie
T
i means

that α has variance 1 in the direction of
the normal of the face. This is important
because it means that there is no variance
in the orientation of the face.

Then we will construct a graph that will
force any path to select a true or false as-
signment for each variable as illustrated in
figure 2. Said formally, indexing over the
variable with index i, we embed nodes in
locations −(i + 1)et,−(i + 1

2 )et ± ei,−iet.
We then draw edges from −(i+1)et to both
−(i+ 1

2 )et±ei and from both −(i+ 1
2 )et±ei

to −iet.

Clause Gadget For each clause j, we will construct a graph that lets the
algorithm choose which variable with which to satisfy the clause as shown in
figure 3.

Recall that each clause j is of the form (xju ∨¬xjv ∨xjw). First indexing over
j, construct “via” nodes at jet and (j + 1)et, respectively. Then if xju appears
positively, construct a node connected to the “via” nodes at (j + 1

2 )et + eju and
at (j+ 1

2 )et− eju if the variable appears negatively. Repeat for xjv and xjw . This
is illustrated in figure 3.

A path through this gadget must pick one of the literals in the clause to
satisfy and pass near the obstacle that corresponds to that variable and the value
the literal requires it to have. In doing so, it may incur risk of intersecting with
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the obstacle. If this variable was assigned to the value the literal specifies, then
the path would have already gone near this obstacle so no further risk is incurred.
However, if the literal contradicts the variable assignment, the path will incur
additional risk for going near this obstacle.

Path Risk Encoding 3SAT The above graph was constructed such that there
will exist a gap between the risk of a satisfying assignment and of a non-satisfying
assignment.

First we note that for any reasonable shadow approximation (including the
ones presented in [4]), there exists a gap between the induced risk close to the
obstacle and far away from the obstacle. For shadow approximation schemes
where this is the case, there is some rclose that lower-bounds the risk computed
from the shadow approximation for the closer points and rfar that upper-bounds
the computed risk for the further point. This holds true for all shadows derived
from the methods in [3] but may not hold for shadows that are computed via
Monte Carlo algorithms.

A path through the variable assignment portion of the graph will go near
k obstacles for the k variable assignments it makes. Then it will be “close” to
k obstacles and “far” from the other k obstacles. Therefore, it will incur risk
krclose + krfar.

If a path through the variable assignment portion encodes a satisfying assign-
ment to the 3SAT problem, there will exist a path through the remainder of the
graph that will not incur any additional cost. If there is no satisfying assignment,
then any path through the remaining portion must go near an obstacle that it
did not go near in the variable assignment portion, so for some variable i, the
optimal path must go close to both the true and false obstacles, incurring cost
at least (k + 1)rclose + (k − 1)rfar. This allows us to compute a lower bound on
ratio between the two risks:

risk ratio =
(k + 1)rclose + (k − 1)rfar

krclose + krfar

=
krclose + krfar + rclose − rfar

krclose + krfar

= 1 +
rclose − rfar
krclose + krfar

= 1 +Θ

(
1

k

)
.

Each gadget can be constructed in polynomial time, and the number of
gadgets is polynomial, so this reduction can be constructed in polynomial time.
Thus any algorithm that can approximate the minimum-risk planning problem in
a graph to a factor better than 1 +Θ

(
1
k

)
can also solve 3SAT with polynomial

overhead. ut

5 Hardness Result in R3
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x

Âx

y

Ây

z

Âz

Fig. 4. A path through this gad-
get must go near either the true
or false obstacle for each vari-
able, thereby selecting a vari-
able assignment.

We prove Theorem 4 by reducing from 3SAT using
the same outline as for Theorem 3 but with more
complicated gadgets. We also add deterministic
obstacles to force any procedure that computes
a safe plan to decide the 3SAT problem, showing
that the problem is hard with and without the
graph restriction.

5.1 Proof

Variable Gadgets As before, we will construct
two PGDF obstacles for each variable, but this
time they will each have three faces. We will con-
tinue to use standard coordinates for the remain-
der of this proof.

For obstacle i, the true obstacle will be defined
as the intersection of αT

i x ≤ 1 and i ≤ eT2 x ≤ i+1, where αi ∼ N (2e1, e1e
T
1 ). The

“negative” obstacle will similarly be defined with βT
i x ≤ 1 and i ≤ eT2 x ≤ i+ 1,

where βi ∼ N (−2e1, e1e
T
1 ).

Then we will construct the variable assignment graph, as illustrated in figure 4.
Said formally, indexing over the variable with index i, we embed nodes in locations
ie2, (i+

1
2 )e2±e1, (i+1)e2. We then draw edges from ie2 to both of (i+ 1

2 )e2±e1,
and from both of (i+ 1

2 )e2 ± e1 to (i+ 1)e2.
Because for this proof we allow any path, not just those restricted to the

graph, we need an additional obstacle to block the path from crossing in between
the variable obstacles. This obstacle will be deterministic and be defined as the
intersection of − 1

8 ≤ e
T
1 x ≤ 1

8 , i+ 1
8 ≤ e

T
2 x ≤ i+ 7

8 , and eT3 x ≤ 1
2 . We also need an

obstacle above the gadget to prevent a path from just going straight up without
first passing through the gadget. This obstacle is defined as the intersection of
eT2 x ≤ k + 1

2 and 1
4 ≤ e

T
3 x ≤ 3

4 .

Clause Gadgets For each clause j we will construct an additional graph “layer”
as illustrated in figure 5.

Recall that each clause j is of the form xju ∨ ¬xv ∨ xw. Without loss of
generality, let ju < jv < jw. Indexing over j, construct nodes at (j + 1)e3, (j +
1)e3+(ju+ 1

2 )e2,(j+1 1
3 )e3+(ju+ 1

2 )e2±e1,(j+1 2
3 )e3+(ju+ 1

2 )e2, j+1 2
3 )e3, drawing

edges between consecutive nodes, letting ‘±’ represent ‘-’ if xju is given in negated
form and ‘+’ otherwise. Then construct nodes at (j+1)e3 +(ju + 1

2 )e2, (j+1)e3 +
(jv+ 1

2 )e2, (j+1 1
3 )e3+(jv+ 1

2 )e2±e1, (j+1 2
3 )e3+(jv+ 1

2 )e2, (j+1 2
3 )e3+(ju+ 1

2 )e2
(the first and last were already constructed previously), drawing edges between
consecutive nodes, similarly setting ‘±’ based on the negation of literal xjv . Then
construct nodes at (j + 1)e3 + (jv + 1

2 )e2, (j + 1)e3 + (jw + 1
2 )e2, (j + 1 1

3 )e3 +
(jw + 1

2 )e2 ± e1, (j + 12
3 )e3 + (jw + 1

2 )e2, (j + 12
3 )e3 + (jv + 1

2 )e2 (the first and
last were already constructed previously), drawing edges between consecutive
nodes, similarly setting ‘±’ based on the negation of literal xjw . Intuitively, this
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creates three possible routes through the graph, each going near the obstacle
corresponding to a particular value assigned to a variable.

(j + 1)e3

(j + 1)e3 + (ju + 1
2
)e2

(j + 1 1
3
)e3 + (ju + 1

2
)e2 ± e1

(j + 1 2
3
)e3 + (ju + 1

2
)e2

(j + 1 2
3
)e3

(j + 1)e3 + (jv + 1
2
)e2

(j + 1 1
3
)e3 + (jv + 1

2
)e2 ± e1

(j + 1 2
3
)e3 + (jv + 1

2
)e2

(j + 1)e3 + (jw + 1
2
)e2

(j + 1 1
3
)e3 + (jw + 1

2
)e2 ± e1

(j + 1 2
3
)e3 + (jw + 1

2
)e2

Fig. 5. A path through this gadget must select one of three paths to go through, each
going near the obstacle for the corresponding literal.

Fig. 6. The bottom layer is
the variable assignment gadget.
The top layer is a single clause
gadget. There would usually
be many more clause gadgets
stacked on top.

As with the variable gadget, we need a few
additional deterministic obstacles in each layer
to force paths to follow the graph, in the sense
that it must still go near the same obstacles as a
path restricted to the graph would. First, we put
boundaries below and above each layer to prevent
paths from just going straight up without passing
through the gadgets. These obstacles are defined
as the intersection of 1

2 ≤ e
T
2 x and j+ 9

12 ≤ e
T
3 x ≤

j + 11
12 , and as the intersection of 1

2 ≤ eT2 x and
j + 1 9

12 ≤ e
T
3 x ≤ j + 1 11

12 . Then we construct an
obstacle in the middle of the layer that a path
must go around, defined as the intersection of
− 1

4 ≤ e
T
1 x ≤ 1

4 and j + 1 1
6 ≤ e

T
3 x ≤ j + 1 1

2 .
We construct obstacles blocking a path from

going around the middle obstacle except for via
one of the paths in the graph. For each variable i and value +/−, if the literal
(¬)xi (where the ‘¬’ is dependent on whether the value is ‘+’ or ‘−’) appears
in clause j, construct the obstacle defined as the intersection of ±eT1 x ≥ 1

8 ,
i ≤ eT2 x ≤ i+ 1, and j + 11

12 ≤ e
T
3 x ≤ j + 1 11

12 . Finally, we construct an obstacle
after the last variable obstacle to prevent the path from just bypassing all the
obstacles. This obstacle is defined as the intersection of eT2 x ≤ k + 3

4 , and
j + 11

12 ≤ e
T
3 x ≤ j + 1 11

12 .
Now we combine the variable and clause gadgets, as seen in figure 6. We

see that as in the proof of theorem 3, if a path through the variable assign-
ment portion encodes a satisfying assignment, there will exist a path through
the remainder of the graph that will not incur any additional cost, where as a
nonsatisfying assignment must incur some additional cost in the clause gadgets.
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Therefore, we see the same gap between a satisfying assignment and a nonsatisfy-

ing assignment:
(k+1)rclose+(k−1)rfar

krclose+krfar
= 1 +Θ( 1

k ). Each gadget can be constructed

in polynomial time, and the number of gadgets is polynomial, so this reduction
can be constructed in polynomial time. Thus, any (1 + α)-approximate Safe
Planning Algorithm can also solve 3SAT with polynomial overhead. ut

6 Conclusions and future work

We have shown that the minimum-risk planning problem on graphs is NP-hard,
even in dimension 3. Furthermore, the fact that it remains hard after restriction
to a small graph indicates that algorithms reducing to a graph search are likely
to be impractical in the uncertain domain.

This suggests that the field should pursue other directions towards solv-
ing motion planning under uncertainty. Trajectory-optimization-based methods,
for example, might lead to efficient practical solutions. Furthermore, barring
stronger hardness-of-approximation results, it is possible that there is a practical
approximation algorithm for solving the minimum-risk planning problem on
graphs.

There is also the related direction of investigating models of uncertainty
over obstacles. We focus on the PGDF model in this work because it captures
certain desirable characteristics and has been used in prior work. However, the
PGDF model has certain surprising characteristics, particularly near the tails
of the distribution [4]. Perhaps there is a model that is a better fit for obstacle
estimates in practice, that also permits efficient algorithms. In exploring this
direction, it is important to note that we do not strongly invoke the structure of
PGDF obstacles. Interesting directions for future work also include finding a good
minimal condition on the obstacle distribution to make the problem NP -hard.

Another direction of future work is finding upper bounds on the safe motion-
planning problem. While, when there is some “slack” in the shadows for the
optimal solution there is a trivial algorithm for finding an approximate solution
by exhaustively iterating through an ε−net of shadow configurations (each one
reduces to a motion planning instance that can be solved by Canny’s roadmap
algorithm), no exact algorithm is known.
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