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Abstract
We consider the problem of motion planning in the presence of uncertain or estimated
obstacles. A number of practical algorithms exist for motion planning in the presence of
known obstacles by constructing a graph in configuration space, then efficiently searching the
graph to find a collision-free path. We show that such a class of algorithms is unlikely to be
practical in the domain with uncertain obstacles. In particular, we show that safe 2D motion
planning among polytopes with Gaussian-distributed faces (PGDF) obstacles is 𝑁𝑃−hard
with respect to the number of obstacles, and remains 𝑁𝑃−hard after being restricted to a
graph. Our reduction is based on a path encoding of MAXQHORNSAT and uses the risk
of collision with an obstacle to encode variable assignments and literal satisfactions. This
implies that, unlike in the known case, planning under uncertainty is hard, even when given
a graph containing the solution. We further show by reduction from 3-SAT that both safe
3D motion planning among PGDF obstacles and the related minimum constraint removal
problem remain 𝑁𝑃 -hard even when restricted to cases where each obstacle overlaps with
at most a constant number of other obstacles. We then identify a parameter that determines
the hardness of this problem. When this parameter is small, we present a polynomial time
algorithm to find the minimum risk trajectory. When this parameter is larger, we are still
able to guarantee an efficient runtime in exchange for an approximately optimal solution.
This parameter seems to be small for most real world problems, suggesting that the tradeoff
between computational efficiency and strong guarantees is not necessary. We also explore
a connection between our work and previous work on the minimum constraint removal
problem (MCR).
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Chapter 1

Introduction

This work is based on [39] and unpublished manuscripts that are jointly written with Brian

Axelrod.

1.1 Motivation

Planning in an uncertain environment is one of the fundamental problems facing autonomous

systems. Drones and autonomous cars, for example, must all navigate environments that

are not known a priori. They must estimate the environment with noisy sensors. Unfortu-

nately, this problem presents many difficulties when one wants to guarantee a low collision

probability. One must reconstruct a model of the environment from sensor observations in a

systematic way, quantify uncertainty in the estimation process and then compute a path with

the appropriate information. While there are many methods to plan a trajectory between two

points in a known environment with strong theoretical guarantees, few of them generalize to

obstacles with locations estimated by noisy sensors. It has proven much harder to provide

strong completeness, runtime, and optimality guarantees in this setting. For the rest of the

paper, when the term safe is used to refer to a trajectory with low collision probability over

the randomness of the uncertain environment.

There has been a long series of works in this area. One line of work models uncer-

tainty in estimation of the environment as a partially observable Markov decision problem

(POMDP) [9]. Unfortunately, solving POMDPs have proven difficult in practice for compli-
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cated problem instances, despite large advances in POMDP solvers [26, 41]. Even solving

finite horizon POMDPs is PSPACE hard, implying that an efficient, general algorithm does

not exist [30].

However, there are many works that suggest that navigation among uncertain obstacles

is an easier problem than solving general POMDPs. A long line of work approaches this

problem, trading off performance, safety guarantees, completeness, and limitations of the

model [5, 22, 29, 20, 42, 31, 32, 10, 15].

In this thesis, we focus on navigation among uncertain obstacles drawn from known

distributions. In the scenario we examine, the robot first fixes a trajectory based on a known

obstacle distribution. Then obstacles are drawn exactly once from the distribution and the

robot executes the plan. The “risk” of the plan is based on the probability that the trajectory

collides with an obstacle. Ideally, an algorithm would be always efficient, always finding

the the optimal solution, and never returning a solution that is less safe than advertised.

There are several straightforward approaches to this problem, that while efficient, do

not necessarily yield solutions that meet practical needs. The first would be to penalize

each waypoint with its unconditional likelihood of collision. This approach corresponds

to the assumption that collision probabilities at different waypoints are independent. The

sum of the individual risks can be taken as a proxy for the total risk. Unfortunately, this

has several undesirable properties. It is sensitive to the coarseness of the discretization.

Taking a trajectory and discretizing more finely increases the computed risk bound even

though the real risk does not change. At one extreme, using this calculation would show that

a robot that doesn’t change position is certain to collide! In reality, one expects collision

probabilities at different points of a trajectory to potentially have significant correlation

making a union bound a poor strategy by which to bound the collision probability.

This can be remedied by using the concept of a shadow. For every obstacle, a “shadow”

is identified that contains the obstacle with a fixed probability. As long the robot follows

a trajectory that avoids the shadows, the risk of the trajectory is at most the sum of the

probabilities that each shadow contains the obstacle. If one can decide the probabilities

corresponding to each shadow ahead of time, it becomes identical to a standard motion

planning problem. Shadows effectively capture the notion that collision probabilities are

14



strongly correlated between points that are close together. Unfortunately, it is important to

choose the probabilities at the same time the path is chosen. If it is not known a priori which

obstacles the optimal trajectory must pass near, the shadows must be chosen conservatively

in a way that has many undesired consequences. For example, even obstacles far away from

the final trajectory which do not have a sizeable effect on the true collision probability may

end up affecting the choice of trajectory and computed risk bound.

Figure 1-1: In the above example the dark blue estimated obstacles have a significant effect
on the risk of collision, but the light gray obstacles do not.

Axelrod, Kaelbling, and Lozano-Pérez [4] posed the following question: Is there an

efficient algorithm that, given a graph embedded in R𝑛 and a set of obstacles, can find the

path with minimal risk as computed via a shadow bound? The cost function derived from the

shadow approximation is only influenced by the portion of the trajectory close to the obstacle

and has submodular structure with respect to the graph. The fact that similar approximations

have worked well for motion planning, and the existence of efficient algorithms for certain

classes of submodular minimization problems gave the hope that it might be possible to find

an efficient algorithm for this problem as well.

While motion planning is hard in general, practical and efficient algorithms have proven

very successful under some assumptions [27]. One such body of work are the sampling-

based motion-planning methods. These algorithms often have the assumption that the

problem can be split into two pieces: First use a practically (though often not worst-case)

efficient method to generate a small graph that contains a solution; then use a standard,

efficient graph search algorithm to find the solution in this graph. Algorithms based on this

scheme have been successful even for high-dimensional planning problems for robots with

many degrees of freedom.

There are several other classes of practically efficient algorithms (including grid based

15



and optimization-based planners) that rely on the assumption that part of the problem may

be solved much more efficiently in the average case than in the worst case. We discuss this

further in the background section.

1.2 Contributions

This paper answers the question posed by Axelrod, Kaelbling, and Lozano-Pérez [4] in the

negative.

Theorem 1. Safe path planning in the presence of uncertain obstacles in 2 dimensions

is NP-hard.

A more formal statement of this result is presented in Section 2. We prove this by reducing

from MAXQHORNSAT using a construction based on and very similar to that used by

Erickson and LaValle [13] for the minimum constraint removal problem (MCR). We also

show, via reduction from 3-SAT, that both safe path planning and MCR remain hard in

three dimensions even when each obstacle overlaps with only a constant number of other

obstacles, answering the question posed by Hauser [18]. Our first contribution is modifying

the reduction to 2D MCR by Erickson and LaValle [13] to instead reduce to the 2D safe

path planning problem. Our second contribution is presenting a new reduction from 3-SAT

to a restricted version of safe path planning and MCR in 3D.

The proofs presented in this thesis illuminate what makes this problem more difficult than

the standard motion-planning problem with known obstacles. Searching for the minimum-

risk path does not have a Markov-like structure. Unlike in the shortest-path problem on

a graph, the risk of the second half of a trajectory is very much affected by the first half.

This means that the problem is lacking the Bellman property, as identified by Salzman, Hou,

and Srinivasa [38]. The absence of a Markov-like property for the risk over the path has

important ramifications for the complexity of the problem. In particular, the collision risk at

different points along a trajectory can be highly correlated.

Because of this result, we cannot hope to find a provably efficient algorithm that works

in general. Instead we identify a parameter which controls long range correlations between
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collision probabilities, and in turn, the hardness of the planning problem. When this

parameter is a small constant, we demonstrate a provably efficient, optimal, algorithm

with rigorous guarantees. Fortunately, this parameter seems to be small for most practical

instances. When the parameter cannot be controlled, we demonstrate a tradeoff between

computation time and the suboptimality of the result.

As mentioned above, planning under obstacle uncertainty is hard because the risk of

collision at potentially distant segments of a trajectory can be correlated. However, in many

domains these correlated risks tend to be somewhat localized to nearby portions of the

trajectory. We identify a parameter that determines this, the collision horizon parameter.

It functions as a measure of how far apart these correlated collisions are in terms of the

number of obstacle shadows entered in between them. Intuitively, this parameter captures

the number of obstacles that are interacting with each other in such a way that a planner

must reason about their collision risks jointly; or alternatively, how much collision history is

needed to define a Markov state, that is, one that fully determines the marginal risk at future

states.

We present a parameterized polynomial-time algorithm 𝑀ℎ, for finding the mininum

risk path in a graph, for which the following informal theorems hold (the formal statements

are presented later in the paper):

Theorem 2. On problems with collision horizon at most ℎ, 𝑀ℎ returns the minimal

collision risk plan.

Theorem 3. On problems with collision horizon ℎ′, where ℎ′ > ℎ, 𝑀ℎ produces a

solution that is suboptimal at most by the risk incurred by correlated collisions in the

optimal trajectory that are separated by more than ℎ other collisions.

We also show that minimum constraint removal, the problem of finding trajectories with

the least number of collisions, is also solved by our algorithm with the same guarantees.
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Theorem 4. The greedy and exact algorithms presented by Hauser [18] are equivalent

to 𝑀0 and 𝑀∞, respectively, applied to MCR.

Hence, 𝑀ℎ can be seen as interpolating between the greedy and exact algorithms on MCR

problems (but not on minimum-risk planning).

These definitions and theorems are stated formally in sections 2.3.1 and 4.2.

1.3 Background

Motion planning for robotics has been extensively studied in many different settings. One

important high-level distinction between settings is whether the environment and state are

known exactly or estimated.

1.3.1 Complexity in Motion Planning

The story of motion-planning algorithms in robotics has been one of walking the fine

boundaries of complexity classes. On one hand, motion planning is PSPACE-hard in

R3 [35] and R2 [11, 19] with respect to the number of degrees of freedom of a robot

(and thus dimension of its configuration space). However, while Canny’s [1988] work

on singly-exponential time (with respect to number of degrees of freedom) roadmaps

leads to a polynomial-time algorithm when the number of degrees of freedom is fixed, a

different set of algorithms is used in practice. The robotics community has been able to find

practically efficient methods that provide meaningful theoretical guarantees weaker than

completeness (finding a solution if one exists). Sampling-based planners such as Rapidly-

Exploring Random Trees (RRTs) [28, 27] and Probabilistic Roadmaps (PRMs) [25] are both

practically efficient and probabilistically complete under some regularity conditions. Given

effective heuristics, graph-based planners have also proved efficient and provide resolution

completeness [27].

Searching for optimal plans, as opposed to simply feasible plans, further increases the

difficulty. In a classic result, Canny and Reif [8] show that the 3-d Shortest-Path Problem is
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NP-hard for a simple robot in terms of the number of obstacles. This ruled out results of the

form of Canny’s [1991] roadmap algorithm that showed fixed parameter tractability in the

feasible motion planning case.

However, the community has been able to find practically efficient algorithms regardless

of these worst-case results. A modified version of the original sampling-based algorithms

allows them to return nearly optimal solutions in the limit [24] and graph-based planning

algorithms are able to provide bounds on the suboptimality of their solutions [1].

Another motion-planning problem that lacks a Markov property is the minimum con-

straint removal problem (MCR), where the objective is to find a path that collides with the

fewest obstacles. This problem was shown to be NP-hard in Cartesian spaces of dimension

3 [17, 18], and shortly later, in dimension 2 [13]. Eiben, Gemmell, Kanj, and Youngdahl [12]

improve on these results by showing that MCR remains hard when obstacles are restricted

to line segments or axis-aligned rectangles. Hauser [18] observes that MCR is in 𝑃 when

obstacles are connected and non-overlapping, and he suggests that the hardness seen in

MCR is caused when an obstacle intersects with 𝑂(𝑛) other obstacles. Erickson and LaValle

[13], Hauser [18], and Eiben, Gemmell, Kanj, and Youngdahl [12] further pose the open

question of whether MCR remains hard when each obstacle overlaps with only a constant

number of other obstacles. We then ask an analogous question: Is safe path planning in the

presence of uncertain obstacles tractable when obstacles intersect only a constant number of

other obstacles? These questions are stated more formally and answered in the negative in

Section 2.

1.3.2 Planning under Uncertainty

While planning under uncertainty has been broadly studied in robotics, few methods have

formal guarantees on solution quality and efficient runtime. We survey some of the related

work below.

Many works assume some sort of uncertainty about the environment, but do not propose

a model in which to rigorously quantify the uncertainty in the environment and provide

guarantees about the success probability of the trajectory. Instead they often rely on heuristics
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that seem to provide the desired behavior.

One line of work focuses on uncertainty in the robot’s position. Here the model of the

robot itself is “inflated" before the collision checking, ensuring that any slight inaccuracy in

the position estimate or tracking of the trajectory does not result in a collision.

Work that focuses on uncertainty in the environment sometimes does the exact opposite.

They often inflate the occupied volume of the obstacle with a “shadow" and ensure that any

planned trajectory avoids the shadow [22, 29].

Both of these approaches work well when the obstacles are spaced out because there

is still room to pass between them, but they become incomplete in more crowded domains

when a trajectory must choose to risk collision with some obstacle, since the planner does

not know beforehand how much it can afford to expand each shadow while still allowing a

trajectory between nearby obstacles.

A more general approach that handles either or both of localization and obstacle un-

certainty is belief-space planning. Belief space is the set of all possible beliefs about or

probability distributions over the current state. Belief-space planning converts the uncertain

domain in state space to belief space, then plans in belief space using trees [34, 5] or control

systems [33].

Another line of work uses synthesis techniques to construct a trajectory intended to be

safe by construction. If the system is modeled as a Markov decision process with discrete

states, a safe plan can be found using techniques from formal verification [10, 15]. Other

authors have used techniques from Signal Temporal Logic combined with an explicitly

modeled uncertainty to generate plans that are heuristically safe [36].

Recent work by Hauser [18, 17] applies an approximate minimum constraint removal

algorithm to motion planning under obstacle uncertainty by randomly sampling many draws

for each obstacle and finding the path that intersects with the fewest samples. With this

approach, he demonstrates low runtime and error on average although with poor worst case

performance. He notes that his greedy minimum constraint removal algorithm is optimal

when the optimal plan does not require entering an obstacle multiple times, and similarly

his solution for motion planning under uncertainty is optimal when it is not required to risk

collision with an obstacle multiple times.
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Building on previous works using “shadows”, Axelrod, Kaelbling, and Lozano-Pérez

[3, 4] formalized the notion of a shadow in a way that allowed the construction of an efficient

algorithm to bound the probability that a trajectory will collide with the estimated obstacles.

However, the proposed RRT-based planning method making use of this algorithm does not

return a solution with probability approaching 1 as the number of iterations approaches

infinity (i.e. it lacks probablistic completeness). This is because this problem lacks optimal

substructure: subpaths of an optimal path are not necessarily optimal, since the collision

risk at different points along a trajectory can be highly correlated if it passes near the same

obstacle multiple times.

We can now define a shadow rigorously:

Definition 1 (𝜖-shadow). A set 𝑆 ⊆ R𝑑 is an 𝜖-shadow of a random obstacle 𝑂 ⊆ R𝑑 if

𝑃𝑟[𝑂 ⊆ 𝑆] ≥ 1 − 𝜖.

Shadows are important because they allow for an efficient method to upper-bound the

probability of collision. If there exists an 𝜖−shadow of an obstacle that does not intersect a

given trajectory’s swept volume, then the probability of the obstacle intersecting with the

trajectory is at most 𝜖. An example of a shadow for an obstacle is shown in figure 1-2.

Shimanuki and Axelrod [39] show that planning in this domain is NP-hard in fixed

dimension, and that even the problem of searching a graph for a safe path is NP-hard. The

reduction they construct forces the planner to solve 3-SAT by encoding variable assignment

and clause satisfaction into collision risks for the different obstacles, taking advantage of the

fact that collisions can be correlated even between distant portions of a trajectory. Hence, it

is believed that the hardness of the problem stems from long-distance dependencies between

potential collisions.
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Figure 1-2: The orange set is a shadow of the obstacle. The blue set is the obstacle
represented by the mean parameters.
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Chapter 2

Problem Definition

2.1 Setup

2.1.1 Notation

In this section we will cover definitions and notation conventions that will be used in this

thesis. A vector will be marked in bold as in u, in contrast to a scalar 𝑢. ∧, ∨, and ¬ are the

logical AND, OR, and NOT operators, respectively. The power set (set of all subsets) of 𝑆

is denoted by 𝒫(𝑆). A function mapping into the power set of R𝑛 outputs subsets of R𝑛.

We will use 𝑒𝑖 to denote the 𝑖th standard basis vector.

2.1.2 Random Obstacle Model

Up until this point, we have been talking about uncertain obstacles in general. In this section,

we define the abstraction we use to work with uncertain obstacles. Note that we are not

working with uncertainty in the robot pose, only in the environment. Further, we will provide

additional constraints on methods that first construct a graph embedded in configuration

space, such as a PRM [25] or RRG [23], then search the graph for safe plans.

It is important that the obstacle distribution captures the fact that collision probabilities

in different locations can be correlated. Consider the following toy example where a range

sensor reports that an obstacle is 10 meters in front of the robot. At time 𝑡 = 1 the robot

drives forward 10 meters and then at 𝑡 = 2 drives backwards 2 meters. If the robot did
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not crash at time 𝑡 = 1, it is unlikely to collide at time 𝑡 = 2! Using a realistic model that

captures correlations allows systems to be both safer and less conservative.

A useful reference here are the shadows defined by Axelrod et al. [4]. The paper defined

shadows controlled by a single parameter (the probability that the shadow contains the

obstacle). Shadows more likely to contain the obstacle strictly contain shadows less likely to

contain the obstacle. The algorithm in our paper works with the monotone obstacle model,

which includes the shadows used in [4]. Under this model, every node in the planning graph

is assigned a risk for each obstacle. For a given path and particular obstacle, the risk of

the path colliding with the obstacle is bounded by the maximum risk. Note that it does not

matter if risks are associated with nodes or edges since a graph with risks at edges may be

transformed via constructing a node for every edge.

Definition 2 (Monotone Risk Model). Given a graph 𝐺 = (𝐸, 𝑉 ) annotated with “risks”

𝑟𝑖 at node i, a function 𝑓 : 𝒫(𝐸) → R is a Monotone Risk Model if 𝑓(𝐸 ′) = max
𝑖∈𝐸′

𝑟𝑖 or 𝑓 is

a monotone accumulation of Monotone Risk Models.

We can examine how to compute such risk values under the model presented in [4].

Under this model, the risk for every node, for a given obstacle, corresponds to the probability

of the minimal shadow that contains the node. A risk level is then a shadow with a particular,

discrete risk value. A natural monotone accumulation would be the OR operation over

collision probabilities. In practice – and in this work – a union-bound accumulation, that is,

summation over probabilities, is often preferred for its simplicity. We note that our theorems

and algorithms apply to both of these, as well as any other monotone accumulation model.

Henceforth we will use 𝑅[𝑥 ∪ 𝑦] to denote this accumulation over the risks of events 𝑥 and

𝑦.

We note this model is not limited to the shadows constructed in [4]. For example, it

applies to shadows computed for different distributions using a similar techniques.

Furthermore, the discrete minimum constraint removal problem (MCR), can also be

expressed as a minimization of a monotone risk model.

In the deterministic case, an obstacle is typically a set of points in task space that the

robot would like to avoid. An equivalent view is to define an obstacle as a mapping from
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robot trajectories to 1 or 0, indicating whether the swept volume of a robot executing

that trajectory collides with the obstacle or not. We extend this notion of an obstacle to

the uncertain case, defining it as a mapping instead from robot trajectories to collision

probabilities.

Definition 3 (Obstacle). An obstacle is defined as a volume in task space (usually R3). We

note that an obstacle also corresponds to a volume in configuration space (all volumes that

result in the robot colliding with the obstacle).

We are concerned with uncertain models, that is random obstacles drawn from a known

distribution. We quantify the risk of collusion through monotone risk models corresponding

to each obstacle. We let 𝑓𝑜 : 𝐸 → R denote the risk model for a particular obstacle. We

note that the values of this function can be computed using shadows.

It is convenient to work with trajectories as swept volumes in task space (i.e. the space

that a robot moves through when following a given trajectory). For a given set of distributions

over obstacles, the risk of a trajectory is the accumulation of risks over every obstacle. We

frequently abuse notation, representing trajectories either in configuration space, task space

or nodes and edges in a graph. This allows us to define an 𝜖−safe trajectory.

Definition 4 (𝜖-safe trajectory). Given joint distributions over random obstacles 𝑂, a

trajectory 𝜏 is 𝜖-safe for a sample 𝑠1..𝑠𝑛 ∼ 𝑂, 𝑅[𝜏 ∩ 𝑠𝑖 ̸= ∅ ∀ 𝑖] ≤ 𝜖. That is, a trajectory

is 𝜖-safe if the accumulated risk over all obstacles is less than 𝜖.

We note that this formulation differs from the notion of “risk-zones" evaluated by

Salzman and Srinivasa [37] and Salzman, Hou, and Srinivasa [38], where the cost of a

trajectory is proportional to the amount of time spent within a risk-zone. These problems

share the lack of an optimal substructure—the subpaths of an optimal path are not necessarily

optimal. Salzman, Hou, and Srinivasa [38] provide a generalization of Dijkstra’s algorithm

that finds minimum-risk plans in their domain efficiently, but as we will show, there are no

such techniques for our problem.

In our hardness proofs, we use a particular kind of monotone risk model: shadows

over polytopes with Gaussian-distributed faces (PGDFs). Under the PGDF assumption,

obstacles are the intersections of halfspaces with parameters drawn from multivariate normal
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distributions. More formally a PGDF 𝑂 ⊂ R𝑛 is 𝑂 =
𝑖⋂︀
𝛼i

𝑇x ≤ 0, where 𝛼i ∼ 𝒩 (𝜇i,Σi).

We can use homogeneous coordinates to create obstacles not centered about the origin.

One reason that PGDF obstacles are important is that we have methods of computing

shadows for PGDF obstacles efficiently [3]. It is also able to capture collision correlations [3],

which forms the basis for the hardness we encounter. This kind of model makes sense when

constructing obstacle distributions from noisy sensor data, such as when estimating obstacle

faces using Bayesian regression on point clouds from LIDAR input. One important property

of this model is that the exact space of collisions is unknown, but the event of a collision is

binary. In contrast, the “risk-zones" evaluated by Salzman and Srinivasa [37] are a better

fit in domains where the area of risk is known, but the degree of risk is not absolute, e.g. a

slippery floor.

2.2 Algorithmic Question

This leads to the following algorithmic question, of finding safe plans for a known distribu-

tion of obstacles.

Problem 1 (𝜖-safe Planning Problem). Given the obstacle distributions 𝑂 and initial

and end points s, t in configuration space, find an 𝜖-safe trajectory from s to t if one

exists, otherwise FAIL.

Note that there exists reductions between the safe planning problem and finding a path

that minimizes the risk of collision. Since the risk 𝜖 is confined to [0, 1], a binary search over

𝜖 yields an efficient algorithm that can approximately compute the minimum risk given an

𝜖−safe planner. For convenience, our proofs will consider the approximate minimum-risk

planning problem, though the construction applies directly to 𝜖−safe planning as well.

Problem 2 ((1 + 𝛼)-approximate minimum-risk planning problem). Given the pa-

rameters of PGDF distributions for each obstacle and initial and end points s, t in
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configuration space, return a ((1 + 𝛼)𝜖*)-safe trajectory from s to t, where 𝜖* is the

minimum 𝜖 for which an 𝜖-safe trajectory exists.

2.2.1 Graph Restriction

We now consider the class of motion-planning algorithms that first construct a graph

embedded in the robot’s configuration space, and then run a graph-search algorithm to find a

path within the graph. This class of algorithms has been shown to be practical in the known

environment, with sampling-based planners such as RRT and PRM. Conditioned on there

being a nonzero probability of sampling a solution, these algorithm are guaranteed to find a

collision-free path with probability approaching 1 as the number of iterations approaches

infinity. [28, 24, 25].

More formally this condition can be articulated as the existence of a path in the 𝛿-interior

of the free space 𝑋𝑓𝑟𝑒𝑒.

Definition 5 (𝛿-interior [24]). A state 𝑥 ∈ 𝑋𝑓𝑟𝑒𝑒 is in the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 if the closed

ball of radius 𝛿 around 𝑥 lies entirely in 𝑋𝑓𝑟𝑒𝑒.

This condition is necessary because it guarantees that finding a plan does not require

waiting for a zero probability event. However this formulation does not extend well to the

domain with uncertain obstacles; there is no concept of “free space" because the locations

of the obstacles are not known. Instead we will use the equivalent view of inflating the path

instead of shrinking the free space.

Definition 6. The 𝛿-inflation of the set 𝑋 is the set 𝑌 =
⋂︀

𝑥∈𝑋
{𝑦 | 𝑑(𝑥, 𝑦) ≤ 𝛿}.

where 𝑑(𝑥, 𝑦) is the distance between 𝑥 and 𝑦.

We note that in the deterministic setting, if a trajectory is in the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒, then

the 𝛿-inflation of the trajectory is entirely in 𝑋𝑓𝑟𝑒𝑒. This allows us to consider problems with

the following regularity condition: there exists a 𝛿-inflated trajectory that has a low risk of

collision.

Definition 7 (𝜖-safe 𝛿-inflated trajectory). A trajectory 𝜏 is an 𝜖-safe 𝛿-inflated trajectory if

the accumulation over the risk that its 𝛿-inflation intersects each obstacle is at most 𝜖.
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We want to find an algorithm that satisfies the completeness and safety guarantees

defined below.

Definition 8 (Probabilistically Complete 𝜖-safe Planning Algorithm). A planning algorithm

takes a set of obstacles, a start state s, and a goal state t as input and generates an 𝜖-safe

trajectory as output. A planning algorithm is safe and probabilistically complete if, with 𝑛

samples, the probability that it finds a safe trajectory approaches 1 as 𝑛 approaches ∞.

We also consider a special case where each obstacle overlaps with only a constant

number of other obstacles.

Definition 9. Two obstacles 𝑂𝑖, 𝑂𝑗 overlap if there exists any point in space that both

obstacles have a significant probability of intersecting. That is, there exists x ∈ R𝑑 such

that 𝑃𝑟[x ∈ 𝑂𝑖] ≥ 𝜖 and 𝑃𝑟[x ∈ 𝑂𝑗] ≥ 𝜖 for 𝜖 = 𝜖*/|𝑂|.

Definition 10 (Probabilistically Complete 𝜅-overlap (1 + 𝛼)-approximate Safe Planning

Algorithm). A probabilistically complete 𝜅-overlap (1 + 𝛼)-approximate safe planning

algorithm is a planning algorithm that is probabilistically complete and (1+𝛼)-approximate

safe for cases where the number of other obstacles that each obstacle overlaps with is at

most 𝜅.

Axelrod, Kaelbling, and Lozano-Pérez [3] provide an extension of the RRT algorithm to

the probabilistic domain using the shadow approximation. The uniqueness of paths between

any two vertices in a tree makes finding the optimal (restricted to the tree) path trivial.

However, while the paths it generates are indeed safe, the algorithm is not probabilistically

complete, since it only considers the first path it finds to each point, even though it may not

be the optimal subpath in order to reach the goal.

The following extension of the RRG algorithm is probabilistically complete, since all

possible path are eventually generated [2].
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Algorithm 1 SAFE_RRG

Input: End points s, t ∈ R𝑑, set of obstacles 𝑂, and number of samples 𝑛.

Output: A 𝜖-safe trajectory from s to t or FAIL.

1: G = CONSTRUCT_RRG(s, t, n)

2: 𝜏 = GRAPH_SEARCH(𝐺,𝑂, 𝑠, 𝑡)

3: return 𝜏 if RISK(𝜏) ≤ 𝜖 else NONE

SAFE_RRG requires as subroutine GRAPH_SEARCH, which is a 𝜖-safe graph-search

algorithm as defined below.

Definition 11 (minimum-risk graph-search algorithm). A minimum-risk graph-search algo-

rithm is a procedure 𝜑(𝐺,𝑂, s, t), where 𝐺 is a graph, 𝑂 is a set of obstacles, and s and t

are the start and end nodes in 𝐺, respectively. It returns a 𝜖*-safe trajectory in 𝐺, where 𝜖*

is the minimum 𝜖 for which an 𝜖-safe trajectory exists.

Theorem 5 ([2]). SAFE_RRG is probabilistically complete and 𝜖-safe as long as

GRAPH_SEARCH is complete.

However, no graph-search procedure, beyond the naïve, exponential-time search procedure,

is provided [2]. This means that, while the probability of success increases with more

samples, the worst-case running time is exponential. Sampling-based motion-planning algo-

rithms work in practice in the known environment because efficient graph-search algorithms

can quickly find collision-free paths within a graph. In order for the 𝑆𝐴𝐹𝐸_𝑅𝑅𝐺 class

of algorithms to be practical, we would need a corresponding graph-search algorithm in

the probabilistic domain. Because the cost of a path depends on what set of shadows it

intersects, the state space of the graph search is not just the current node, but it also includes

the accumulated risk incurred due to each obstacle. This means that the typical approaches

for searching graphs with known obstacles, which make use of dynamic programming,

cannot be applied in the same manner to graphs with unknown obstacles.
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2.2.2 Complexity Results

Unfortunately, as will be shown in the remainder of this paper, Problem 1 and Problem 2 are

NP-HARD with respect to 𝑛 = Θ(|𝐺| + |𝑂|), the size of the input, even with a point robot

two dimensions and given a graph containing the solution.

Theorem 6. Unless 𝑃 = 𝑁𝑃 , there is no (1 + 𝛼)-approximate 𝜖-safe graph-search

algorithm that runs in 𝑃𝑂𝐿𝑌 (𝑛), time when restricted to graphs that embed in R𝑑,

𝑑 = 𝑂(𝑘) where 𝑘 is the number of obstacles and 𝛼 = Θ( 1
𝑛
).

We can strengthen this result to show that the minimum-risk planning problem is hard in

general, that is, even when not restricted to a graph.

Theorem 7. The (1 + 𝛼)-approximate minimum-risk planning problem is NP-hard.

That is, unless 𝑃 = 𝑁𝑃 , there is no (1 + 𝛼)-approximate Safe Planning Algorithm for

R2 that runs in 𝑃𝑂𝐿𝑌 (𝑛) when 𝛼 = Θ
(︀

1
𝑛2

)︀
, even when provided a graph containing

the solution.

We show Theorem 6 and Theorem 7 by constructing a minimum risk planning problem

in 2 dimensions which solves MAXQHORNSAT (an NP-complete problem). The proof

follows the outline of the MCR hardness proof presented by Erickson and LaValle [13].

The main contribution of the work in this theorem is the connection to the minimum risk

planning problem and the construction of the uncertain obstacles. However, the construction

is not natural in the sense that certain constructed obstacles are used to correlate collision

probabilities in disparate parts of the space. Some obstacles will be split by others and there

is a high degree of overlap. We also show that the problem remains hard in 3D even when

each obstacle overlaps with only a constant number of other obstacles.

Theorem 8. The 𝜅-overlap (1 + 𝛼)-approximate minimum-risk planning problem is

NP-hard for 𝜅 = 𝑂(1) in 3 dimensions. That is, unless 𝑃 = 𝑁𝑃 , there is no 𝜅-overlap

(1 + 𝛼)-approximate Safe Planning Algorithm for R3 that runs in 𝑃𝑂𝐿𝑌 (𝑛) when

𝛼 = Θ( 1
𝑛2 ), even when provided a graph containing the solution and when restricted to
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cases where each obstacle overlaps with at most 𝜅 other obstacles.

Furthermore, the proof can be extended to apply to MCR as well.

Theorem 9. The 𝜅-overlap minimum constraint removal problem is NP-hard for 𝜅 =

𝑂(1) in 3 dimensions.

We show Theorems 8 and 9 by constructing a minimum risk planning problem and related

MCR problem in 3 dimensions which solves 3-SAT. We believe the construction presented

here is of particular value because it is very natural – the construction is simple and does not

require that any obstacle be immediately adjacent to more than a constant number of other

obstacles.

2.3 Parameterized Algorithm

2.3.1 Formal Definition of Collision Horizon

Here we identify a parameter that drives the hardness of these problems. More specifically,

we define the collision horizon which, loosely speaking, captures the length of dependencies

between obstacles.

We first define the collision coverage, which describes the distance between correlated

collisions for a single obstacle.

Definition 12 (collision coverage). The collision coverage 𝐻(𝜏)
𝑜 for a given trajectory 𝜏 and

obstacle 𝑜 ∈ 𝑂 in minimum-risk graph-search problem instance (𝐺,𝑂, s, t) is the number

of obstacles (including 𝑜 itself) for which 𝜏 enters a higher risk level between the first time it

enters a given risk level of 𝑜 and the last time. More formally, treating 𝜏 as a sequence of

edges, let 𝜁(𝜏)𝑜′ denote the set of indices 𝑡 for edges for which 𝜏(𝑡) enters a higher risk level

of obstacle 𝑜′, ie 𝑓𝑜′(𝜏(1..𝑡) > 𝑓𝑜′(𝜏(1..𝑡− 1))). Then

𝐻(𝜏)
𝑜 =

∑︁
𝑜′∈𝑂

1(∃𝑡 ∈ 𝜁
(𝜏)
𝑜′ 𝑠.𝑡. min 𝜁(𝜏)𝑜 ≤ 𝑡 ≤ max 𝜁(𝜏)𝑜 ).

This leads us to define the collision horizon for the overall problem instance.
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Definition 13 (collision horizon). The collision horizon ℎ of a given minimum-risk graph-

search problem instance (𝐺,𝑂, s, t) is the maximum collision coverage of any obstacle of a

minimum-risk trajectory, or more formally, ℎ = min𝜏∈𝑇* max𝑜∈𝑂 𝐻
(𝜏)
𝑜 , where 𝑇* is the set

of minimal-risk trajectories from s to t.

Figure 2-1: In the first setting the red path doesn’t return to any earlier obstacles, leading to
a collision horizon of 0. In the second setting the red path returns to the first obstacle after
going through the second, leading to a collision horizon of 1.

2.3.2 Fixed-parameter Result

We can now define a parameterized graph-search algorithm.

Definition 14 (ℎ-horizon minimum-risk graph-search algorithm). A ℎ-horizon minimum-

risk graph-search algorithm is a procedure 𝜑(𝐺,𝑂, s, t), where 𝐺 is a graph, 𝑂 is a set of

obstacles, and s and t are the start and end nodes in 𝐺, respectively. When the collision

horizon of the problem is at most ℎ, it returns a 𝜖*-safe trajectory in 𝐺, where 𝜖* is the

minimum 𝜖 for which an 𝜖-safe trajectory exists.

Later in this thesis we present a polynomial-time ℎ-horizon minimum-risk graph-search

algorithm.
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Chapter 3

Complexity

3.1 Hardness Results in R2

3.1.1 Maximum Quadratic Horn Clause Satisfiability

Maximum Quadratic Horn Clause Satisfiability (MAXQHORNSAT) is an NP-complete

problem whose input is a Boolean formula given in conjunctive normal form. It consists of

the intersection of many clauses, each consisting of at most two literals (i.e. is quadratic),

and each clause contains at most one positive literal (i.e. is a Horn clause) [21]. In other

words, it is of the form ((𝑥0 ∨ ¬𝑥1) ∧ (¬𝑥1 ∨ ¬𝑥2) ∧ (𝑥2) ∧ ...). While QHORNSAT,

the decision problem of determining the satisfiability of the input formula, is in P [14],

MAXQHORNSAT, the problem of determining the maximum number of clauses that can

be satisfied, is NP-hard [21]. MAXQHORNSAT was used by Erickson and LaValle [13] to

show that minimum constraint removal (MCR), a similar problem, is NP-hard. Our reduction

is based on that used by Erickson and LaValle and will use a similar construction modified

to apply to the safe planning problem. We will consider a formula with 𝑛𝑣 variables, 𝑛𝑛

clauses with two negative literals, 𝑛𝑝 clauses with one positive literal and one negative

literal, and 𝑛𝑠 clauses with only a single literal. We also define the total number of clauses

𝑛𝑐 = 𝑛𝑠 + 𝑛𝑝 + 𝑛𝑛 and the total size of the problem 𝑛 = 𝑛𝑣 + 𝑛𝑐.
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3.1.2 Proof Outline

We prove Theorem 6 using a reduction from MAXQHORNSAT. Given a MAXQHORNSAT

instance, we construct an R2 (1 + 𝛼)-approximate minimum-risk planning problem and

graph containing the solution. Our construction will have two kinds of obstacles. High-risk

obstacles will induce a sufficiently high risk that any “reasonable" solution will go through

the minimal number of these obstacles. Low-risk obstacles will affect the collision risk

much less and will be used to count how many clauses are satisfied. The sum of the potential

risk of all low-risk obstacles will be less than that of a single high-risk obstacle. This means

the optimal solution will always choose to avoid a high-risk obstacle whenever possible,

regardless of how many low-risk obstacles it must pass in order to do so.

1. Construct a portion of the graph for the algorithm to assign every variable by taking

either the left or right branch, corresponding to setting the value of each variable to

true or false, respectively. A high-risk obstacle corresponding to each branch will

ensure that the optimal path only goes down one of the branches.

2. Construct a portion of the graph for the algorithm to select a literal from each clause

to try to satisfy by taking either the left or right branch, corresponding to selecting

the first or second literal, respectively. Choosing a branch which corresponds to a

different assignment than in the first part would result in passing by an extra high-risk

obstacle.

3. Construct low-risk obstacles such that there will be additional collision risk each time

the selected literal is not satisfied by the chosen variable assignment.

The solution to this planning problem can then be transformed into a solution to the

original MAXQHORNSAT instance in polynomial time (via observing which nodes were

visited), demonstrating that (1 + 𝛼)-approximate safe graph search is at least as hard as

MAXQHORNSAT.
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3.1.3 Obstacle Templates

Throughout this reduction we will construct a number of obstacles using a few common

templates, so for simplicity of notation we will define a few parameterized types of obstacles.

These obstacle templates will fall into two categories based on how much we want them to

affect the cost of a trajectory: low-risk obstacles and high-risk obstacles. In figures, high-risk

obstacles will be denoted in blue and low-risk obstacles will be denoted in green.

The first kind of obstacle, shown in Figure 3-1, is a low-risk obstacle parameterized by a

line segment (u,v). It is a long, thin obstacle that runs parallel to (u,v) and has one edge

with uncertain position such that there is a risk of collision with points along (u,v).

̂︀𝐶(u,v, 𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

x ∈ R2

1

|v − u|
(v − u)𝑇 (x− u) ≥ −𝜖𝐶

1

|u− v|
(u− v)𝑇 (x− v) ≥ −𝜖𝐶

𝛼 ≤ 1

|v − u|
(𝑅𝜋

2
(v − u))𝑇 (x− u) ≤ 𝜖𝐶

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for small constant 𝜖𝐶 , and where 𝑅𝜃 is the 2D rotation matrix for a clockwise rotation

with angle 𝜃. Note that ̂︀𝐶 defines a rectangular obstacle, where the position of one edge is

parameterized by 𝛼. Then we can define a distribution over such obstacles

𝐶(u,v) = ̂︀𝐶(u,v, 𝛼) where 𝛼 ∼ 𝒩 (𝜇𝐶 , 𝜎
2
𝐶)

for small constants 𝜇𝐶 and 𝜎𝐶 . It guarantees that any point within distance 𝜖𝐶 of (u,v) has a

risk of collision of at most 𝑟𝑐 = Φ
(︁
− 1

𝜎𝐶
(𝜇𝐶 − 𝜖𝐶)

)︁
and at least 𝑟′𝑐 = Φ

(︁
− 1

𝜎𝐶
(𝜇𝐶 + 𝜖𝐶)

)︁
,

and any point with distance further than 𝑧𝐶𝜖𝐶 from (u,v) for some constant 𝑧𝐶 > 1 has

a risk of collision of at most 𝑟𝑓 = Φ
(︁
− 1

𝜎𝐶
(𝜇𝐶 + 1√

2
𝑧𝐶𝜖𝐶)

)︁
(lower bounded by 𝑟′𝑓 = 0

because risk becomes arbitrarily small as distance from the obstacle increases), where Φ

is the cumulative distribution function of the standard normal distribution. Note that given

some value of 𝜖𝐶 we can set 𝜇𝐶 , 𝜎𝐶 , and 𝑧𝐶 to achieve any desired values of 𝑟𝑐, 𝑟′𝑐, and 𝑟𝑓 .

In particular, we can make 𝑟′𝑐/𝑟𝑐 arbitrarily close to 1 by decreasing 𝜖𝐵, and make 𝑟𝑓/𝑟𝑐

arbitrarily close to 0 by increasing 𝑧𝐵.
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The next kind of obstacle is identical to the line-segment obstacle defined above and

shown in Figure 3-1 except it is a high-risk obstacle, so it has a higher risk of intersecting

with points near the line segment (so it can be thought of as having a higher weight in terms

of affecting the risk of a path).

̂︀𝑉 (u,v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑥 ∈ R2

1

|v − u|
(v − u)𝑇 (x− u) ≥ −𝜖𝑉

1

|u− v|
(u− v)𝑇 (x− v) ≥ −𝜖𝑉

𝛼 ≤ 1

|v − u|
(𝑅𝜋

2
(v − u))𝑇 (x− u) ≤ 𝜖𝑉

𝛼 ∼ 𝒩 (𝜇𝑉 , 𝜎
2
𝑉 )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for small constant 𝜖𝑉 . Note that ̂︀𝑉 defines a rectangular obstacle, where the position of one

edge is parameterized by 𝛼. Then we can define a distribution over such obstacles

𝑉 (u,v) = ̂︀𝑉 (u,v, 𝛼) where 𝛼 ∼ 𝒩 (𝜇𝑉 , 𝜎
2
𝑉 )

for small constants 𝜇𝑉 and 𝜎𝑉 . As before, it guarantees that any point within distance

𝜖𝑉 of (u,v) has a risk of collision of at most 𝑟𝑉 𝑐 = Φ(− 1
𝜎𝑉

(𝜇𝑉 − 𝜖𝑉 )) and at least

𝑟′𝑉 𝑐 = Φ(− 1
𝜎𝑉

(𝜇𝑉 + 𝜖𝑉 )), and any point with distance further than 𝑧𝑉 𝜖𝑉 from (u,v) for

some constant 𝑧𝑉 > 1 has a risk of collision of at most 𝑟𝑉 𝑓 = Φ(− 1
𝜎𝑉

(𝜇𝑉 + 1√
2
𝑧𝑉 𝜖𝑉 ))

(lower bounded by 𝑟′𝑉 𝑓 = 0). Again, given some value of 𝜖𝑉 we can set 𝜇𝑉 , 𝜎𝑉 , and 𝑧𝑉 to

achieve any desired values of 𝑟𝑉 𝑐, 𝑟′𝑉 𝑐, and 𝑟𝑉 𝑓 , and so let us set the constants such that

𝑟𝑉 𝑐 = 5𝑛𝑐𝑟𝑐

𝑟′𝑉 𝑐 = 5𝑛𝑐𝑟
′
𝑐

𝑟𝑉 𝑓 = 5𝑛𝑐𝑟𝑓 .

The final type of obstacle, shown in Figure 3-2, is another low-risk obstacle parame-

terized by a single point q and a horizontal direction ℎ (either 1 or −1, corresponding to

right and left, respectively). It is a small obstacle that sits to the side of q in the direction

specified by ℎ and has one edge with uncertain position such that there is risk of collision
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u v

(a)

u v
(b)

Figure 3-1: The illustrations of the obstacle template 𝐶(𝑢, 𝑣). Note that it is a PGDF
obstacle with the height of the obstacle being the only part that is random. Figure 3-1a
illustrates a probability density function of collision. The distance between 𝑢 and the top
line or between 𝑣 and the top line is 𝜖𝐶 . Figure 3-1b illustrates several obstacles drawn from
the obstacle template. Note that if 𝑢 in collision so is 𝑣 and vice versa.

with q and points nearby 𝑞.

̂︀𝐵(q, ℎ, 𝛼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩𝑥

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

x ∈ R2

e2
𝑇q− 𝜖𝐵 ≤ e2

𝑇x ≤ e2
𝑇q+ 𝜖𝐵

(e1
𝑇q+ 𝛼)ℎ ≤ e1

𝑇xℎ ≤ (e1
𝑇q+ 𝜖𝐵)ℎ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
for small constant 𝜖𝐵 (also recall that ei refers to the 𝑖th standard basis vector). Note that ̂︀𝐵
defines a rectangular obstacle, where the position of one edge is parameterized by 𝛼. Then

we can define a distribution over such obstacles

𝐵(q, ℎ) = ̂︀𝐵(q, ℎ, 𝛼) where 𝛼 ∼ 𝒩 (𝜇𝐵, 𝜎
2
𝐵)

for small constants 𝜇𝐵 and 𝜎𝐵. It guarantees that any point within a ball of radius 𝜖𝐵

around q has a risk of collision of at most 𝑟𝑐 = Φ
(︁
− 1

𝜎𝐵
(𝜇𝐵 − 𝜖𝐵)

)︁
and at least 𝑟′𝑐 =

Φ
(︁
− 1

𝜎𝐵
(𝜇𝐵 + 𝜖𝐵)

)︁
, and any point outside a ball of radius 𝑧𝐵𝜖𝐵 around q for some constant

𝑧𝐵 > 1 has a risk of collision of at most 𝑟𝑓 = Φ
(︁
− 1

𝜎𝐵
(𝜇𝐵 + 1√

2
𝑧𝐵𝜖𝐵)

)︁
. As before, note
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q h

Figure 3-2: An example of the 𝐵(𝑞, ℎ, 𝛼) obstacle template. The distance between 𝑞 and
the left edge of the obstacle is 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝐵

that given some value of 𝜖𝐵 we can set 𝜇𝐵, 𝜎𝐵, and 𝑧𝐵 to achieve any desired values of 𝑟𝑐,

𝑟′𝑐, and 𝑟𝑓 . Since these will also be low-risk obstacles, let us say that they will take on the

same risk values as with the obstacles defined by 𝐶 above.

3.1.4 Variable Gadgets

First, for each variable 𝑖 in the MAXQHORNSAT problem, we construct a section of the

graph where the choice of path corresponds to choosing either a true or false value of

variable 𝑖. We illustrate this in Figure 3-3 and formalize this below. For variable 𝑖 we

construct vertices
uv
i = (0, 3𝑖)

av
i = (−(𝑛𝑣 − 𝑖) − 1, 3𝑖 + 1)

bv
i = (𝑛𝑣 − 𝑖 + 1, 3𝑖 + 1)

vv
i = (0, 3𝑖 + 2)

and edges

(uv
i , a

v
i )

(uv
i ,b

v
i )

(av
i ,v

v
i )

(bv
i ,v

v
i ).

Each pair of consecutive loops is connected by an additional edge (vv
i ,u

v
i+1) for all 𝑖..

This entire set of variable gadgets will be mirrored at the bottom, with the positive-

negative clause gadgets (see Section 3.1.5 between them. The bottom set of variable gadgets
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will be needed for the negative-negative clause gadgets (see Section 3.1.5). Then for each

variable 𝑖 we construct a mirrored loop with vertices

uv′
i = (0, 7𝑛𝑣 + 3𝑛𝑝 − 3𝑖)

av′
i = (−(𝑛𝑣 − 𝑖) − 1, 7𝑛𝑣 + 3𝑛𝑝 − 3𝑖 + 1)

bv′
i = (𝑛𝑣 − 𝑖 + 1, 7𝑛𝑣 + 3𝑛𝑝 − 3𝑖 + 1)

vv′
i = (0, 7𝑛𝑣 + 3𝑛𝑝 − 3𝑖 + 2)

and edges

(uv′
i , a

v′
i )

(uv′
i ,b

v′
i )

(av′
i ,v

v′
i )

(bv′
i ,v

v′
i ) .

Likewise, consecutive loops are connected by an additional edge (vv′
i ,u

v′
i+1) for all 𝑖.

In order to ensure that the resulting path selects the same variable assignment in the

top set and the mirrored set, for each variable 𝑖, we construct an obstacle that has risk of

colliding with the true path in both versions, and another obstacle that has a risk of colliding

with the false path in both versions. These obstacles are given by

𝑉 (av
i , a

v′
i )

𝑉 (bv′
i ,b

v
i ).

Because the collision risks are correlated, selecting the same value in the bottom gadget as in

the top gadget will incur no additional risk of colliding with the corresponding obstacle, but

selecting a different value will incur the additional risk of colliding with the other obstacle.

3.1.5 Clause Gadgets

There are three types of clause gadgets, each of which will need to be handled separately:

single literals, each with only a single positive or negative literal, positive-negative clauses,

each with one positive literal and one negative literal, and negative-negative clauses, each
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Figure 3-3: The variable gadget loops (solid lines) and obstacles (gradient-shaded rectangles).
A path assigns a true or false value to each variable by selecting a branch through the variable
gadget loop to traverse. It must also select the same variable assignment in the mirrored
gadgets at the bottom in order to avoid additional collision risk. Notice that only high-risk
obstacles are used in these gadgets, as they are constructed with the 𝑉 template. There are
two mirrored copies of each loop, with the positive-negative clause (or +/− clause) gadgets
in the center. The positive-negative clause gadgets will be constructed in Section 3.1.5. Also
notice how loops closer to the center have smaller width, so a straight line can be drawn
from any loop to the center without intersecting any other loops.
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with two negative literals.

Single Literal

This first case is the simplest, as there is no choice to make about which literal to satisfy,

so we do not need to add any additional components to the graph. For each single-literal

clause 𝑗, let 𝑐𝑠𝑗 denote the variable specified by the literal. Then we construct obstacles such

that setting variable 𝑐𝑠𝑗 to the opposite value in the variable assignment gadgets will incur

additional risk. For a positive literal, the obstacles are constructed as

𝐶(av
csj
,uv

csj+1)

𝐵(bv
csj
, 1)

and for a negative literal, the obstacles are constructed as

𝐶(uv
csj+1,b

v
csj

)

𝐵(av
csj
,−1).

Notice that each path through the variable gadget loop will incur risk of colliding with one of

these obstacles, but at the end of the loop it will pass near the same obstacle that is near the

branch corresponding to a satisfying assignment. Therefore selecting a variable assignment

that satisfies this clause will risk collision with only one of these obstacles, whereas selecting

a variable assignment that does not satisfy this clause will risk collision with both obstacles.

Positive and Negative Literal

For each clause 𝑗 with one positive literal and one negative literal, we construct a loop below

the top set of variable gadgets, with vertices

up
j = (0, 4𝑛𝑣 + 3𝑗)

ap
j = (−1, 4𝑛𝑣 + 3𝑗 + 1)

bp
j = (1, 4𝑛𝑣 + 3𝑗 + 1)

vp
j = (0, 4𝑛𝑣 + 3𝑗 + 2)
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Figure 3-4: An example positive-negative clause gadget, for 𝑋1 ∨ ¬𝑋2, illustrating the
variable gadget loops (obstacles not shown) and positive-negative clause gadget loops and
obstacles. A path assigns a true or false value to each variable by selecting a branch through
the variable gadget loop, thereby risking collision with an obstacle. Then, there is no
additional risk for taking the branch through the positive-negative clause gadget loop that
corresponds to a satisfied literal. Notice that only low-risk obstacles are used in this gadget.
For clarity, we have drawn the 𝐵-template obstacles along the edge of the branch rather than
at the corner of the branch, as it is constructed in the template.
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and edges

(un
i , a

n
i )

(un
i ,b

n
i )

(an
i ,v

n
i )

(bn
i ,v

n
i ).

As before, we also construct edges connecting consecutive loops (vn
i ,u

n
i+1) for all 𝑗, an

edge from the end of the last variable gadget in the top set to the first positive-negative

clause loop (vv
nv
,un

0), and an edge from the last positive-negative clause loop to the first

variable gadget in the mirrored set (vn
nn
,uv′

nv
).

Each loop gives a planning algorithm two paths corresponding to two literals to try to

satisfy. Arbitrarily, for each such positive-negative clause 𝑗, let the left path correspond to

the positive literal 𝑐𝑝𝑗𝑝 and the right path correspond to the negative literal 𝑐𝑝𝑗𝑛. For each one,

we construct two obstacles, each near one of the two paths of the corresponding variable

gadget loop. However, for the obstacle near the path corresponding to assigning a value to

the variable that satisfies the literal, we extend it to also be near the path for this literal in

this clause gadget loop.

𝐶
(︁
ap
j , a

v
cpjp

)︁
𝐶
(︁
bv
cpjn

,bp
j

)︁

𝐵
(︁
bv
cpjp

, 1
)︁

𝐵
(︁
av
cpjn

,−1
)︁

Therefore, taking a path corresponding to a satisfied literal risks collision with just that one

obstacle, whereas a path corresponding to a non-satisfied literal risks collision with both

obstacles.
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Figure 3-5: An example negative-negative clause gadget, for ¬𝑋1 ∨ ¬𝑋2, illustrating the
variable gadget loops and obstacles (blue) and negative-negative clause gadget loops and
obstacles (green). A path assigns a true or false value to each variable by selecting a branch
through the variable gadget loop. It must also select the same variable assignment in the
mirrored gadgets at the bottom in order to avoid additional collision risk. Then, there is no
additional risk for taking the branch through the negative-negative clause gadget loop that
corresponds to a satisfied literal.
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Two Negative Literals

For each clause 𝑗 with two negative literals, we construct a loop to the side of the other

gadgets, with vertices

un
j = (2𝑛𝑣 + 3𝑛𝑠 − 3𝑗, 4𝑛𝑣)

an
j = (2𝑛𝑣 + 3𝑛𝑠 − 3𝑗 − 1, 4𝑛𝑣 + 1)

bn
j = (2𝑛𝑣 + 3𝑛𝑠 − 3𝑗 − 1, 4𝑛𝑣 − 1)

vn
j = (2𝑛𝑣 + 3𝑛𝑠 − 3𝑗 − 2, 4𝑛𝑣)

and edges

(up
i , a

p
i )

(up
i ,b

p
i )

(ap
i ,v

p
i )

(bp
i ,v

p
i ).

We construct edges connecting consecutive loops (vp
i ,u

p
i+1) for all 𝑗. We also construct

an intermediate vertex d = (2𝑛𝑣 + 3𝑛𝑠, 7𝑛𝑣 + 3𝑛𝑝 + 2) to connect the last variable gadget

in the mirrored set to the first negative-negative clause loop with two edges (vv
0 ,d) and

(d,up
0).

Each loop gives a planning algorithm two paths corresponding to two literals to try to

satisfy. For each such negative-negative clause 𝑗, let 𝑐𝑛𝑗1 denote the variable specified by

the first literal and 𝑐𝑛𝑗2 denote the variable specified by the second literal. For each literal,

we construct two obstacles, each near one of the two paths of the corresponding variable

gadget loop (for the literal corresponding to the top path of the negative-negative clause

loop, we will use the top set of variable gadgets, and for the literal corresponding to the

bottom path of the negative-negative clause loop, we will use the mirrored set of variable

gadgets). However, for the obstacle near the path corresponding to a negative assignment

assigning (which satisfies the literal), we extend it to also be near the path for this literal in
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this clause gadget loop.

𝐶(bv
cnj1

, an
j )

𝐶(bn
j , a

v′
cnj2

)

𝐵(av
cnj1

,−1)

𝐵(av′
cnj2

,−1)

Therefore, taking a path corresponding to a satisfied literal risks collision with just that one

obstacle, whereas a path corresponding to a non-satisfied literal risks collision with both

obstacles.

3.1.6 Path Risk Encoding MAXQHORNSAT

We define the (1 + 𝛼)-approximate safe graph search problem as 𝜑(𝐺,𝑂, s, t), where 𝐺 is

the set of vertices and edges constructed in the variable and clause gadgets above, 𝑂 is the

set of obstacles constructed in the variable and clause gadgets above, and

s = uv
0

t = vn
ns

.

𝐺 and 𝑂 were constructed such that there will exist a gap between the risk of a path cor-

responding to an optimal assignment and a path corresponding to a suboptimal assignment.

Each variable gadget loop in the top set passes near a single high-risk obstacle, and there

will exist a path through the mirrored set that does not pass near any additional high-risk

obstacles, and passing near an additional high-risk obstacle incurs more risk than passing

near every low-risk obstacle, so a minimum-risk path will pass near exactly 𝑛𝑣 high-risk

obstacles. Any path must also pass near at least one obstacle for each clause gadget, and it

will pass near an additional obstacle for each unsatisfied clause, so a minimum-risk path

will pass near (𝑛𝑠 + 𝑛𝑝 + 𝑛𝑛 + 𝛿) low-risk obstacles, where 𝛿 is the minimum number

of unsatisfied clauses. Recall that there exists a gap between the induced risk close to

an obstacle 𝑟𝑐 and far away from the obstacle 𝑟𝑓 (or 𝑟𝑉 𝑐 and 𝑟𝑉 𝑓 in the case of high-risk
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obstacles). Then a path corresponding to an optimal solution to the MAXQHORNSAT

problem will incur risk at most

𝑛𝑣𝑟𝑉 𝑐 + 𝑛𝑣𝑟𝑉 𝑓 + (𝑛𝑐 + 𝛿)𝑟𝑐 + (3𝑛𝑐 − 𝛿)𝑟𝑓

and a path corresponding to a suboptimal solution to the MAXQHORNSAT problem will

incur risk at least

𝑛𝑣𝑟
′
𝑉 𝑐 + 𝑛𝑣𝑟

′
𝑉 𝑓 + (𝑛𝑐 + 𝛿 + 1)𝑟′𝑐 + (3𝑛𝑐 − 𝛿 − 1)𝑟′𝑓 .

This allows us to compute a lower bound on the ratio of the risks between a suboptimal

solution and an optimal solution as

𝑛𝑣𝑟
′
𝑉 𝑐 + 𝑛𝑣𝑟

′
𝑉 𝑓 + (𝑛𝑐 + 𝛿 + 1)𝑟′𝑐 + (3𝑛𝑐 − 𝛿 − 1)𝑟′𝑓

𝑛𝑣𝑟𝑉 𝑐 + 𝑛𝑣𝑟𝑉 𝑓 + (𝑛𝑐 + 𝛿)𝑟𝑐 + (3𝑛𝑐 − 𝛿)𝑟𝑓

=
𝑛𝑣𝑟

′
𝑉 𝑐 + (𝑛𝑐 + 𝛿 + 1)𝑟′𝑐

𝑛𝑣𝑟𝑉 𝑐 + 𝑛𝑣𝑟𝑉 𝑓 + (𝑛𝑐 + 𝛿)𝑟𝑐 + (3𝑛𝑐 − 𝛿)𝑟𝑓

=
5𝑛𝑐𝑛𝑣𝑟

′
𝑐 + (𝑛𝑐 + 𝛿 + 1)𝑟′𝑐

5𝑛𝑐𝑛𝑣𝑟𝑐 + 5𝑛𝑐𝑛𝑣𝑟𝑓 + (𝑛𝑐 + 𝛿)𝑟𝑐 + (3𝑛𝑐 − 𝛿)𝑟𝑓

≥
(︂

𝑟′𝑐
𝑟𝑐𝛽

+
𝑟′𝑐

20𝑛𝑐𝑛𝑣𝑟𝑐

)︂
+

𝑟′𝑐
20𝑛𝑐𝑛𝑣𝑟𝑐

≥1 + 𝜃

(︂
1

𝑛2

)︂

if we set the obstacle constants such that 20𝑛𝑐𝑛𝑣 + 𝛽 ≥ 20𝑛𝑐𝑛𝑣𝛽, where 𝛽 = 1 + 3
𝑟𝑓
𝑟𝑐

Each gadget can be constructed in polynomial time, and the number of gadgets is

polynomial, so this reduction can be constructed in polynomial time. Thus, any algorithm

that can approximate the minimum-risk planning problem in a graph to a factor better than

1 + Θ( 1
𝑛2 ) can also solve MAXQHORNSAT with polynomial overhead.

3.1.7 Hardness of Continuous Planning Problem

We prove Theorem 7 by extending the above reduction to still apply even without the graph

restriction (thereby reducing to (1 + 𝛼)-approximate minimum-risk planning). Given the
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graph 𝐺 and set of obstacles 𝑂 constructed above, we surround 𝐺 with additional obstacles

such that a path cannot deviate from 𝐺 by more than 2𝜖𝑃 , for some small constant 𝜖𝑃 . We

divide the space of R2 into a grid with cells of size 𝜖𝑃 × 𝜖𝑃 and construct a square obstacle

in every cell that does not intersect with the graph and is within a window containing all of

the gadgets.

𝐶𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩x

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
x ∈ R2

𝑖𝜖𝑃 ≤ e1
𝑇x ≤ (𝑖 + 1)𝜖𝑃

𝑗𝜖𝑃 ≤ e2
𝑇x ≤ (𝑗 + 1)𝜖𝑃

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
for all 𝑖, 𝑗 ∈ Z

𝑂′ = 𝑂 ∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶𝑖𝑗

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
𝑖, 𝑗 ∈ Z

− 1

𝜖𝑃
2𝑛𝑣 ≤ 𝑖, 𝑗 ≤ 1

𝜖𝑃
(8𝑛𝑣 + 4𝑛𝑝)

𝐶𝑖𝑗 ∩𝐺 = ∅

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Note that there are a polynomial number of such obstacles, so if 𝜖𝑃 is sufficiently small,

the solution to the resulting (1 + 𝛼)-approximate minimum-risk planning problem or lack

thereof is approximately equivalent to that for the original (1 + 𝛼)-approximate safe graph

search problem, and so (1 + 𝛼)-approximate minimum-risk planning is also NP-hard.

3.2 Hardness with Constraints on Overlapping Obstacles

Hauser [18] observed that his 3D MCR reduction as well as the 2D MCR reduction presented

by Erickson and LaValle [13] required that each obstacle be allowed to overlap with 𝑂(𝑛)

other obstacles. Similarly, we note that the reduction we present above for 2D motion

planning under obstacle uncertainty also requires that each obstacle overlap with 𝑂(𝑛) other

obstacles. This is a relatively unnatural problem instance, as most real-world problems will

not have this degree of overlap. In this section, we show that the problem remains hard in

3D even when each obstacle only overlaps with a constant number of other obstacles.
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3.2.1 3SAT

3SAT is an NP-complete problem that is commonly used to prove the hardness of other

problems [40]. The problem input is a Boolean formula given in conjunctive normal

form, where each clause consists of three literals, or in other words, it is of the form

((𝑥0 ∨ ¬𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥4) ∧ . . .). The algorithm must then decide whether

there exists any variable assignment that satisfies the formula. We will consider a 3SAT

problem with 𝑘 variables 𝑥0, 𝑥1, . . . and 𝑚 clauses, where each clause 𝑗 is of the form

(𝑥𝑗𝑢 ∨ ¬𝑥𝑗𝑣 ∨ 𝑥𝑗𝑤).

3.2.2 Proof Outline

We prove Theorem 8 using a reduction from 3SAT. Given a 3SAT instance, we construct a

𝜅-overlap (1 + 𝛼)-approximate minimum-risk planning problem as follows.

1. Construct a set of variable assignment layers where each branch corresponds to a

variable assignment.

2. Construct a set of clause layers where each branch corresponds to selecting a literal to

satisfy.

3. For each variable assignment layer, construct a pair of obstacles for each variable

that will encode whether the variable is set to true or false. There will be additional

collision risk for a path that selects different values in each variable assignment layer,

as well as for a path that selects a literal that is not satisfied by the value selected in

the preceding variable assignment layer.

The solution to the planning problem can then be transformed into a solution to the 3SAT

instance in polynomial time, demonstrating that the 𝜅-overlap (1+𝛼)-approximate minimum-

risk planning problem is at least as hard as 3SAT.
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Figure 3-6: A path through this gadget must go near either the true or false obstacle for each
variable, thereby selecting a variable assignment.
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3.2.3 Proof

Variable Gadgets

First, we will construct a variable assignment layer for each clause 𝑗. A variable assignment

layer consists of two PGDF obstacles for each variable 𝑖 in the 3SAT problem.

Note that we define a PGDF obstacle as the intersection of halfspaces of the form

𝛼𝑇𝑥 ≤ 0 for 𝛼 normally distributed and 𝑥 represented in homogeneous coordinates. Here

we will work with just one face and standard coordinates for convenience. That is, each

obstacle 𝑖 will be defined as

𝑜 =
{︀
x
⃒⃒
𝛼i

𝑇x ≤ 1, 𝛼i ∼ 𝒩 (𝜇i,Σi)
}︀

.

For obstacle 𝑖, the true obstacle will be defined as the intersection of

𝛼i
𝑇x ≤ 1

𝑖 ≤ e2
𝑇x ≤ 𝑖 + 1

2𝑗 − 3

2
< e3

𝑇x ≤ 2𝑗 +
3

2

where 𝛼i ∼ 𝒩 (2e1, e1e1
𝑇 ). The “negative" obstacle will similarly be defined with

𝛽i
𝑇x ≤ 1

𝑖 ≤ e2
𝑇x ≤ 𝑖 + 1

2𝑗 − 3

2
< e3

𝑇x ≤ 2𝑗 +
3

2

where 𝛽i ∼ 𝒩 (−2e1, e1e1
𝑇 ).

Intuitively the covariance e1e1
𝑇 means that 𝛼i has variance 1 in the direction of the

normal of the face. This is important because it means that there is no variance in the

orientation of the face. Also note that each obstacle overlaps with the corresponding obstacle

in the layer below and the layer above, which we will later show to be important in ensuring

that variable assignments are consistent across layers.

Then we will construct the variable assignment graph, as illustrated in figure 3-6. Said
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formally, indexing over the variable with index 𝑖, we embed nodes in locations

(2𝑗 − 1)e3 + 𝑖e2

(2𝑗 − 1)e3 + (𝑖 +
1

2
)e2 ± e1

(2𝑗 − 1)e3 + (𝑖 + 1)e2.

We then draw edges from (2𝑗 − 1)e3 + 𝑖e2 to both of (2𝑗 − 1)e3 + (𝑖 + 1
2
)e2 ± e1, and

from both of (2𝑗 − 1)e3 + (𝑖 + 1
2
)e2 ± e1 to (2𝑗 − 1)e3 + (𝑖 + 1)e2.

Clause Gadgets

For each clause 𝑗 we will construct an additional graph “layer" in between consecutive pairs

of variable layers that lets the algorithm choose which literal to satisfy, as illustrated in

figure 3-7.

Recall that each clause 𝑗 is of the form 𝑥𝑗𝑢 ∨ ¬𝑥𝑣 ∨ 𝑥𝑤. Without loss of generality, let

𝑗𝑢 < 𝑗𝑣 < 𝑗𝑤. Indexing over 𝑗, construct nodes at

2𝑗e3, 2𝑗e3 +

(︂
𝑗𝑢 +

1

2

)︂
e2(︂

2𝑗 +
1

3

)︂
e3 +

(︂
𝑗𝑢 +

1

2

)︂
e2 ± e1(︂

2𝑗 +
2

3

)︂
e3 +

(︂
𝑗𝑢 +

1

2

)︂
e2(︂

2𝑗 +
2

3

)︂
e3

drawing edges between consecutive nodes, and letting ‘±’ represent ‘-’ if 𝑥𝑗𝑢 is given in
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negated form and ‘+’ otherwise. Then construct nodes at

2𝑗e3 +

(︂
𝑗𝑢 +

1

2

)︂
e2

2𝑗e3 +

(︂
𝑗𝑣 +

1

2

)︂
e2(︂

2𝑗 +
1

3

)︂
e3 +

(︂
𝑗𝑣 +

1

2

)︂
e2 ± e1(︂

2𝑗 +
2

3

)︂
e3 +

(︂
𝑗𝑣 +

1

2

)︂
e2(︂

2𝑗 +
2

3

)︂
e3 +

(︂
𝑗𝑢 +

1

2

)︂
e2

(the first and last were already constructed previously), drawing edges between consecutive

nodes, and similarly setting ‘±’ based on the negation of literal 𝑥𝑗𝑣 . Then construct nodes at

2𝑗e3 +

(︂
𝑗𝑣 +

1

2

)︂
e2

2𝑗e3 +

(︂
𝑗𝑤 +

1

2

)︂
e2(︂

2𝑗 +
1

3

)︂
e3 +

(︂
𝑗𝑤 +

1

2

)︂
e2 ± e1(︂

2𝑗 +
2

3

)︂
e3 +

(︂
𝑗𝑤 +

1

2

)︂
e2(︂

2𝑗 +
2

3

)︂
e3 +

(︂
𝑗𝑣 +

1

2

)︂
e2

(the first and last were already constructed previously), drawing edges between consecutive

nodes, and similarly setting ‘±’ based on the negation of literal 𝑥𝑗𝑤 . Intuitively, this creates

three possible routes through the graph, each going near the obstacle corresponding to a

particular value assigned to a variable.

A path through this gadget must pick one of the literals in the clause to satisfy and pass

near the obstacle that corresponds to that variable and the value the literal requires it to have.

In doing so, it may incur risk of intersecting with the obstacle. If this variable was assigned

to the value the literal specifies, then the path would have already gone near this obstacle so

no further risk is incurred. However, if the literal contradicts the variable assignment, the

path will incur additional risk for going near this obstacle.
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2𝑗e3

2𝑗e3 + (𝑗𝑢 + 1
2
)e2

(2𝑗 + 1
3
)e3 + (𝑗𝑢 + 1

2
)e2 ± e1

(2𝑗 + 2
3
)e3 + (𝑗𝑢 + 1

2
)e2

(2𝑗 + 2
3
)e3

2𝑗e3 + (𝑗𝑣 + 1
2
)e2

(2𝑗 + 1
3
)e3 + (𝑗𝑣 + 1

2
)e2 ± e1

(2𝑗 + 2
3
)e3 + (𝑗𝑣 + 1

2
)e2

2𝑗e3 + (𝑗𝑤 + 1
2
)e2

(2𝑗 + 1
3
)e3 + (𝑗𝑤 + 1

2
)e2 ± e1

(2𝑗 + 2
3
)e3 + (𝑗𝑤 + 1

2
)e2

Figure 3-7: A path through this gadget must select one of three paths to go through, each
going near the obstacle for the corresponding literal.

Figure 3-8: The bottom layer is the first variable assignment layer. The top layer is the
first clause gadget. There would usually be many more clause gadgets stacked on top with
additional variable gadget layers in between.
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Full Reduction

Now we combine the variable and clause gadgets, as seen in figure 3-8. As in Section 3.1.7,

we construct a grid of deterministic obstacles to force the path to remain near the graph.

Given the graph 𝐺 and set of obstacles 𝑂 constructed above, we surround 𝐺 with additional

obstacles such that a path cannot deviate from 𝐺 by more than 2𝜖𝑃 , for some small constant

𝜖𝑃 . We divide the space of R2 into a grid with cells of size 𝜖𝑃 × 𝜖𝑃 × 𝜖𝑃 and construct a

cubic obstacle in every cell that does not intersect with the graph and is within a window

containing all of the gadgets.

𝐶z =

⎧⎨⎩x

⃒⃒⃒⃒
⃒⃒ x ∈ R3

𝑧𝑖𝜖𝑃 ≤ 𝑥𝑖 ≤ (𝑧𝑖 + 1)𝜖𝑃 ∀ 𝑖 ∈ {1, 2, 3}

⎫⎬⎭
for all z ∈ Z3

𝑂′ = 𝑂 ∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶z

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
𝑧 ∈ Z3

− 4

𝜖𝑃
≤ 1√

3
|z| ≤ 1

𝜖𝑃
(𝑘 + 𝑚 + 4)

𝐶z ∩𝐺 = ∅

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Path Risk Encoding 3SAT

This graph was constructed such that there will exist a gap between the risk of a satisfying

assignment and of a non-satisfying assignment. First we note that for the PGDF obstacle

model as well as most reasonable alternative formulations, there exists a gap between the

induced risk close to the obstacle and far away from the obstacle. In particular, there is

some 𝑟𝑐 that lower-bounds the risk computed from the shadow approximation for the closer

points and 𝑟𝑓 that upper-bounds the computed risk for the further point. A path through

the variable assignment portion of the graph will go near 𝑘𝑚 obstacles for the 𝑘 variable

assignments it makes, each repeated 𝑚 times. Then it will be “close" to 𝑘𝑚 obstacles and

“far" from the other 𝑘𝑚 obstacles. Therefore, it will incur risk 𝑘𝑚𝑟𝑐 + 𝑘𝑚𝑟𝑓 .

If a path through the variable assignment portion encodes a satisfying assignment to

the 3SAT problem, there will exist a path through the remainder of the graph that will not

incur any additional cost. If there is no satisfying assignment, then any path through the
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remaining portion must go near an obstacle that it did not go near in the variable assignment

portion, so for some variable 𝑖, the optimal path must go close to both the true and false

obstacles, incurring cost at least (𝑘𝑚 + 1)𝑟𝑐 + (𝑘𝑚 − 1)𝑟𝑓 . This allows us to compute a

lower bound on ratio between the two risks:

(𝑘𝑚 + 1)𝑟𝑐 + (𝑘𝑚− 1)𝑟𝑓
𝑘𝑚𝑟𝑐 + 𝑘𝑚𝑟𝑓

=
𝑘𝑚𝑟𝑐 + 𝑘𝑚𝑟𝑓 + 𝑟𝑐 − 𝑟𝑓

𝑘𝑚𝑟𝑐 + 𝑘𝑚𝑟𝑓

=1 +
𝑟𝑐 − 𝑟𝑓

𝑘𝑚𝑟𝑐 + 𝑘𝑚𝑟𝑓

=1 + Θ

(︂
1

𝑘𝑚

)︂
.

We note that each obstacle only overlaps with at most a constant number of other

obstacles. In particular, each obstacle will overlap with the two corresponding obstacles

in the layer above and the layer below, as well as the constant number of deterministic

obstacles forming dividers between layers.

Each gadget can be constructed in polynomial time, and the number of gadgets is

polynomial, so this reduction can be constructed in polynomial time. Thus any algorithm

that can approximate the 𝜅-overlap (1 + 𝛼)-approximate minimum-risk planning problem

(regardless of whether a graph containing the solution is provided) to a factor better than

1 + Θ
(︀

1
𝑘𝑚

)︀
can also solve 3SAT with polynomial overhead.

Extension for Minimum Constraint Removal

This reduction can also be extended to apply to the Minimum Constraint Removal (MCR)

Problem, proving Theorem 9 and answering the question posed by Hauser [18]. We replace

each uncertain obstacle in the 𝜖-safe planning problem with an MCR obstacle covering the

𝑟𝑐-shadow of the obstacle. As before, a path corresponding to a satisfying assignment will

collide with 𝑘𝑚 obstacles, whereas a path corresponding to a nonsatisfying assignment must

collide with at least 𝑘𝑚 + 1 obstacles. Then the ratio between the costs of a nonsatisfying
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path and a satisfying path is lower bounded by

𝑘𝑚 + 1

𝑘𝑚
= 1 + Θ

(︂
1

𝑘𝑚

)︂
.

Therefore, MCR remains NP-hard even when each obstacle is connected and intersects no

more than 𝜅 obstacles (𝜅 held constant).
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Chapter 4

Fixed-parameter Algorithm

4.1 Parameterized Tractability

When a problem is found to be intractable in general, the natural next step is to ask if there

are any special cases that might be tractable. We have already shown that the case where

each obstacle overlaps with at most a constant number of other obstacles remains hard.

Instead, we look at the underlying factor that appeared to be caused by obstacle overlap:

obstacle reentry. Both the 3SAT and MAXQHORNSAT reductions rely on the robot going

near the same obstacle multiple times, at distant parts of the trajectory. In particular, we see

that the robot must pass near an unbounded number of other obstacles in the intervening time.

This number is captured by the collision horizon parameter. We find that this parameter

drives the hardness of the problem, and so when the collision horizon is fixed, the problem

becomes tractable.

4.2 Algorithm

In this section, we present a polynomial time ℎ-horizon minimum-risk graph-search al-

gorithm. The algorithm is generally structured similarly to 𝐴* search [16] minimizing

collision risk, but with the state augmented to include the collision memory in addition to

the current vertex. The collision memory can be thought of as the maximum reached for

each obstacle in order to get to the current state. Then, the visited set contains all visited
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states for each vertex. When deciding whether to skip a state, instead of just checking

whether the exact state has previously been visited, it instead checks whether every set of at

most ℎ remembered collisions are contained in the collision memory of some previously

visited state at this vertex. This is necessary in order to bound the number of states visited.

Pseudocode for this algorithm is provided in Algorithm 2. With 𝑘 obstacles, 𝐿 risk levels,

and 𝐸 edges, it can visit at most (𝑘𝐿)ℎ unique states for each vertex, so it can query at most

𝐸(𝑘𝐿)ℎ edges. Since each edge can take 𝑂
(︀(︀

𝑘
ℎ

)︀
(𝑘𝐿)ℎ𝑘

)︀
to check whether it can be skipped,

the overall algorithm runs in time 𝑂
(︀(︀

𝑘
ℎ

)︀
(𝑘𝐿)2ℎℎ𝐸𝑘 log 𝑉 𝑘𝐿

)︀
, which is polynomial when

ℎ is fixed.
Algorithm 2 MEMORY_SEARCH (𝑀ℎ)

Input: Graph 𝐺 = (𝑉,𝐸), obstacles 𝑂, end points s, t, and collision horizon ℎ.
Output: A trajectory from s to t through 𝐺.

1: visited = {}
2: queue = PriorityQueue({(s, [], {})})
3: while not queue.empty() do
4: u, 𝜏, 𝐶 = queue.pop()
5: // return if reached goal
6: if u = t then
7: return 𝜏
8: end if
9: // check whether every subset of 𝑀 of size at most ℎ

10: // is contained in the memory of some visited state
11: if ∃𝑀 ⊆ 𝐶 𝑠.𝑡. (|𝑀 | ≤ ℎ and ¬∃ 𝐶 ′′ ∈ visited[𝑢] 𝑠.𝑡. 𝑀 ⊆ 𝐶 ′′) then
12: visited.insert(𝑢, 𝐶)
13: // add each outgoing edge to the queue
14: for v ∈ 𝐸[v] do
15: 𝐶 ′ = {(𝑜,max(𝐶[𝑜], 𝑓𝑜((𝑢, 𝑣))) for each 𝑜 ∈ 𝑂}
16: queue.insert(

∑︀
𝑜∈𝑂 𝐶 ′[𝑜], (v, 𝜏 + (u,v), 𝐶 ′))

17: end for
18: end if
19: end while

Intuitively, the algorithm is performing an exact graph search that prunes states that can

only be useful if the collision horizon is larger. The augmented state with the remembered

collisions is sufficient to fully predict the marginal cost of future states. However, the

potential number of such states is exponentially large in the collision horizon. We know that

a state with a higher cost than an existing state for the same vertex can only be part of a

lower-risk path if the remembered collisions reduce future marginal risk due to correlated
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collisions. But if the collision horizon is ℎ, then only ℎ collisions must be remembered in

order to describe the state. One approach would be to restrict the collision memory to ℎ

collisions. Due to the large branching factor stemming from the choice of which collision to

forget, we do not limit the collisions we record. Instead we simply check whether any subset

of size at most ℎ is not already contained by a previously visited state, thereby treating each

state as a collection of states with memory size ℎ. If the obstacles have multiple risk levels,

the new history is kept only when it has at least ℎ obstacles with a lower risk level than each

of the previous visits to the current node. This algorithm correctly computes the cost of

any trajectory segment that does not incur correlated collision risk at points separated by

more than ℎ other obstacles. Thus, the following theorem bounding the suboptimality of the

algorithm holds.

Theorem 10. Let 𝜖 be the associated cost of the trajectory generated by 𝑀ℎ(𝐺,𝑂, s, t)

and let 𝑇* be the set of optimal trajectories, with associated cost 𝜖*. Then

𝜖 ≤
∑︁

𝑜∈𝑂,𝜏𝑖∈𝑆
(𝜏*)
𝑜

𝑓𝑜(𝜏𝑖) ≤ 𝜖* +
∑︁
𝑜∈𝑂

(|𝑆(𝜏*)
𝑜 | − 1)𝑓𝑜(𝜏*)

where 𝑆(𝜏*)
𝑜 is the trajectory 𝜏* split into the fewest segments such that for each 𝜏𝑖 ∈ 𝑆

(𝜏*)
𝑜 ,

𝐻
(𝜏𝑖)
𝑜 ≤ ℎ.

Proof. Let 𝜖 be the associated cost of the trajectory generated by 𝑀ℎ(𝐺,𝑂, s, t) and let

𝑇* be the set of optimal trajectories, with associated cost 𝜖*. Because each obstacle is

distributed independently from other obstacles, we begin by considering the risk incurred

by each one separately. For a given obstacle 𝑜, suppose 𝑆
(𝜏*)
𝑜 is the trajectory 𝜏* split into

the fewest segments such that for each 𝜏𝑖 ∈ 𝑆
(𝜏*)
𝑜 , 𝐻(𝜏𝑖)

𝑜 ≤ ℎ. For each time 𝜏𝑖 enters a risk

level with edge (𝑢, 𝑣), the planning tree generated by 𝑀ℎ must contain a state 𝑠𝑢 at vertex

𝑢 with memory containing the preceding ℎ collisions in 𝜏𝑖 since such a state is reachable

(given that 𝜏𝑖 reaches it) and would not be skipped unless another previously visited state

at 𝑢 already contained the preceding ℎ collisions. Because 𝐻
(𝜏𝑖)
𝑜 ≤ ℎ, we know that the

preceding ℎ collisions are sufficient to determine the marginal risk of each collision. Then

𝑀ℎ will at some point expand edge (𝑠𝑢, 𝑠𝑣), where 𝑠𝑣 is the state at vertex 𝑣 still with
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memory containing the preceding ℎ collisions in 𝜏𝑖 and with cost from 𝑜 no more than 𝑓𝑜(𝜏𝑖).

Hence, 𝑀ℎ computes the marginal risk of this obstacle for this subtrajectory correctly. Then

the total computed risk from obstacle 𝑜 for trajectory 𝜏* is at most

∑︁
𝜏𝑖∈𝑆

(𝜏*)
𝑜

𝑓𝑜(𝜏𝑖)

Hence, the algorithm would assign the overall risk of trajectory 𝜏* as at most

̃︀𝜖 ≤ ∑︁
𝑜∈𝑂,𝜏𝑖∈𝑆

(𝜏*)
𝑜

𝑓𝑜(𝜏𝑖)

Because 𝑀ℎ greedily expands nodes in order of computed cost, it would only select a

different trajectory if its computed cost 𝜖 ≤ ̃︀𝜖. We know that 𝑀ℎ can only overestimate

the cost of a trajectory (due to not taking into account the optimal set of past collisions),

not underestimate, so the cost of the trajectory it returns is at most 𝜖. Finally, since

𝑓𝑜(𝜏*) = max
𝜏𝑖∈𝑆

(𝜏*)
𝑜

𝑓𝑜(𝜏𝑖) and

𝜖* =
∑︁
𝑜∈𝑂

𝑓𝑜(𝜏*) =
∑︁
𝑜∈𝑂

max
𝜏𝑖∈𝑆

(𝜏*)
𝑜

𝑓𝑜(𝜏𝑖)

we are left with the following bound:

𝜖 ≤ 𝜖 ≤ ̃︀𝜖 ≤ 𝜖* +
∑︁
𝑜∈𝑂

(|𝑆(𝜏*)
𝑜 | − 1)𝑓𝑜(𝜏*)

And the following consequence holds when the collision horizon is fixed.

Theorem 11. 𝑀ℎ returns an optimal trajectory when the collision horizon of the

problem is less than ℎ.

Thus, the problem is tractable when the collision horizon is small, and when it is unbounded,

we have an algorithm that produces a solution whose suboptimality is limited by the how

much the optimal trajectory exceeds a collision horizon of ℎ. This bound is especially
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helpful for domains where obstacle extents have infinite support, because while the collision

horizon of these problems can be fairly large due to significant overlap of shadows, they

impact the quality of the solution by the amount of change in risk level only over the areas

that interact with more than ℎ other obstacles, and typically only the large, low-risk shadows

interact with large numbers of obstacles. Hence, we can still find a near-optimal solution.

Some examples of the behavior of this algorithm on different kinds of problems are in

Figure 4-1.

Figure 4-1: An example where 𝑀0 is optimal (left) and one where it is suboptimal (right).
The shading indicates the obstacle shadows, so the probability a trajectory collides with a
given obstacle is given by the darkness of the maximally shaded point it goes through. In
both cases the optimal trajectory is the solid black line, which risks collision with the long
obstacle at the bottom – note that even though the trajectory on the right risks collision with
the bottom obstacle twice, these collisions are correlated (if the first “dip" is in collision,
then so is the second, and vice versa), so the overall collision risk is the same as on the left.
However, in the suboptimal case, 𝑀0 will instead pick the dotted subtrajectory, because
by itself it is safer than the corresponding subpath of the optimal trajectory. Hence, this
problem instance has collision horizon 1, and so 𝑀1 will solve it correctly.

4.2.1 Application to MCR

We would now like to consider the related problem of minimum constraint removal, or the

problem of finding a plan that collides with the smallest number of obstacles. This problem

was studied by Hauser [18], who presented two algorithms for solving it. The first is an

exact solver, which retains the set of past collisions in the state space of the search, leading

to optimal solutions but a potentially exponentially large search space. The other algorithm

is a greedy solver, which is restricted to visiting each vertex at most once. As a result, the

greedy method is faster, but can be suboptimal in certain cases.

We so far have described an algorithm for planning under obstacle uncertainty. However,
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as noted by Hauser [18] and by Shimanuki and Axelrod [39], there appear to be strong

connections between planning under obstacle uncertainty and minimum constraint removal.

In fact, a minimum constraint removal problem can be described as a planning under obstacle

uncertainty problem, where each obstacle only has a single and a fixed cost for colliding

with it. Intuitively, this can be thought of as treating the objective of minimizing collisions

as equivalent to the objective of minimizing collision risk when each obstacle has some

fixed probability of existing.

As such, our algorithm can also be used to solve minimum constraint removal problems.

Moreover, 𝑀0 is equivalent to the greedy algorithm proposed by Hauser [18], and 𝑀∞ is

equivalent to his exact algorithm. Thus, the collision horizon parameter of our algorithm

can be seen as interpolating between the greedy and exact algorithms, providing a tradeoff

between optimality and runtime based on the application.

4.3 Empirical Results

We now present experimental results comparing our algorithm to various baselines as well

as illustrating how the collision horizon parameter influences behavior. We consider two

baselines: First, we implemented the naive and commonly used approach of simply setting

all the shadows to be equal, often referred to as constructing buffers, and then running a

normal motion planner on it. Our implementation iteratively adapts the buffer size to select

the smallest risk level that allows a solution. Second, we compare to a method proposed

by Hauser [18] which samples obstacle instances from the distribution and then uses an

approximate minimum constraint removal planner to find the path that collides with the

fewest sampled obstacles. Note that this approach does not guarantee safe plans because

a trajectory constructed conditioned on a specific sample of obstacle instances can still be

likely to collide with an independent sample of obstacle instances. As such, we slightly

modify it to construct each risk level as an individual obstacle rather than sampling actual

obstacle instances. This ensures the soundness of the algorithm while leading to a runtime

improvement due to needing fewer obstacles, that leads to a fair comparison. We note that

in order to guarantee a low risk a very large number of samples is required.
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Figure 4-2: The robot’s task is to pick up the red box and carry it out of the room through
the hallway at the top. The green boxes (of which there are between 8 and 24) are obstacles
with known position but Gaussian distributed extents. This is then discretized into 3 risk
levels.

4.3.1 Moving Boxes Domain

The first domain we evaluate our algorithm on is a pick-and-place motion planning problem

among uncertain obstacles. An example problem instance is depicted in Figure 4-2.

We sample approximately 600 robot base poses and draw edges to form a graph embed-

ded in the configuration space of the robot base. We then sample up to 4 feasible grasps,

each of which creates an edge to a copy of the original graph (a copy is necessary because

the collisions at each node are different based on whether the robot is holding a box and how

it is grasping it). The performance of each method on this domain is compared in Figure

4-3.

We also measured the effect of the collision horizon on these performance metrics,

depicted in Figure 4-4.

We find that our algorithm is already near-optimal at ℎ = 0, and the gap becomes entirely

closed with ℎ = 1. This suggests that this domain tends to have a very small collision
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Figure 4-3: The optimality rate (percent of problem instances where the algorithm returns
an optimal solution), runtime, and planning risk of each method. Runtime and cost are
depicted as the difference compared to the optimal planner 𝑀24 to control for the variance
in difficulty of different problem instances.
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Figure 4-4: The optimality, runtime, and planning risk of 𝑀ℎ for each collision horizon.
Runtime and cost are depicted as the difference compared to the optimal planner 𝑀24 to
control for the variance in difficulty of different problem instances. Increasing the collision
horizon past 6 up to 24 shows no noticeable change in behavior, so we have cropped the
graphs for clarity.

67



horizon. The obstacle-sampling approach behaves similarly to 𝑀0, which is unsurprising

since the minimum constraint removal planner used is equivalent to 𝑀0. However, it runs

slower, likely because it has to handle a larger number of sampled obstacles instead of

reasoning about the differents directly. Setting the shadows to be equal is a fast solution,

but is very suboptimal. We suspect this is because due to the crowdedness of the domain,

the robot only actually risks collision with a fraction of the obstacles, and so expanding all

the shadows by an equal amount is overly conservative. Overall, 𝑀1 appears to be the most

generally attractive option, as it is optimal in every instance and runs slightly faster than the

exact search.

4.3.2 Driving Domain

We also evaluate our method on a driving domain. In this problem, the vehicle is attempting

to make an unprotected left turn, and there is both cross and oncoming traffic. An example

of this domain is depicted in Figure 4-5.

The geometric curve the vehicle will follow is fixed, but the vehicle has the option

to proceed forward or wait at each timestep. Hence, the graph is a 2D lattice where one

dimension is progress along the curve (40 steps) and the other dimension is time (100

timesteps). This graph is fed as input to the graph search algorithms, each of which

returns a trajectory that indicates when the robot should be moving and when it should be

stopping. Practically speaking, a solution trajectory makes two choices: which vehicles to

cut between when entering the intersection, and which vehicles to cut between when leaving

the intersection. The performance of these methods are compared in Figure 4-6.

We also measured the effect of the collision horizon on these performance metrics,

depicted in Figure 4-7. We find that 𝑀0 and running MCR on sampled obstacles produce

plans of similar quality, although 𝑀0 is significantly faster. As before, setting the shadows

to be equal is suboptimal in nearly all of the problems in this domain because there are too

many obstacles, so it must choose an overly conservative shadow for each one. Overall,

𝑀1 appears to be the most generally attractive option, as it is optimal in every instance,

although in this domain increasing the collision horizon does not appear to increase runtime
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Figure 4-5: The robot (blue trapezoidal vehicle) making an unprotected left turn along
the dotted white curve. Each obstacle (red rounded vehicles) exists in space-time and has
uncertain speed. There is cross traffic going to the right blocking the robot’s path before
entering the intersection, oncoming traffic going downwards blocking the robot’s path before
exiting the intersection, and an obstacle vehicle in front. The robot must choose when it is
safest to cut between vehicles, keeping in mind that going too fast risks collision with the
front vehicle. There are a total of 12 obstacle vehicles.
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Figure 4-6: The optimality rate (percent of problem instances where the algorithm returns an
optimal solution), runtime, and planning risk of each method. Runtime and cost are depicted
as the difference compared to the optimal planner 𝑀12 to control for the variance between
problem instances.
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Figure 4-7: The optimality and planning risk of 𝑀ℎ for each collision horizon. Cost is
depicted as the percent difference compared to the optimal planner 𝑀12 to control for the
variance in difficulty between problem instances. There was no significant difference in
runtime across different values of ℎ, so the runtime graph is omitted. Increasing the collision
horizon past 6 shows no noticeable change in behavior, so we have cropped the graphs for
clarity.
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significantly.

4.3.3 Minimum Constraint Removal for Manipulation Planning

We also evaluate our algorithm as a minimum constraint removal planner. Our experimental

domain is identical to the one in Section 4.3.1, but the obstacles are deterministic and the

task is instead to find the path with the fewest collisions. This task is very practically relevant

in manipulation planning domains to determine which obstacles must be moved out of the

way in order to perform a given operation.

As described before, Hauser [18] presented two algorithms, a greedy planner and an

exact planner, which are equivalent to 𝑀0 and 𝑀24, respectively (note that 𝑀24 is equivalent

to 𝑀∞ when there are at most 24 obstacles). Our algorithm is compared for different settings

of the collision horizon in Figure 4-8.

Similar to minimum-risk planning, we find that 𝑀0 is already near optimal, and that 𝑀1

closes the gap. As a result, it is unclear whether the collision horizon is bounded for this

domain, or if it is just highly likely to be small. As before, 𝑀1 strikes a good balance of

optimal performance and quick runtime.
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Figure 4-8: The optimality, runtime, and planning risk of 𝑀ℎ for each collision horizon.
Runtime and cost are depicted as the difference compared to the optimal planner 𝑀24 to
control for the variance in difficulty of different problem instances. Increasing the collision
horizon past 6 up to 24 shows no noticeable change in behavior, so we have cropped the
graphs for clarity.
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Chapter 5

Conclusion

We have shown that the minimum-risk planning problem on graphs is NP-hard, even

in dimension 2. However, it becomes tractable when the collision horizon is bounded.

Furthermore, we present a practical algorithm that efficiently finds optimal plans for fixed

collision horizon and finds approximately optimal plans with a natural suboptimality bound

when the collision horizon is higher.

This demonstrates that approximate planning under obstacle uncertainty is tractable in

practical domains, which can lead to improved robustness in many robotic planning domains.

Furthermore, it shows that the collision horizon is the source of the hardness of the problem,

suggesting that the field should look towards this parameter to find further improvements

and applications.

One caveat is that the runtime of the algorithm scales poorly with the collision horizon.

A potential direction for future work would be to further explore the relationship between the

collision horizon and the hardness of the problem. Either finding more efficient algorithms

that reduces the exponential runtime to one with a fixed base, ideally something like 2ℎ

rather than the 𝑛ℎ our algorithm has, or showing that such an algorithm does not exist would

be a significant step in understanding the nature of these problems.

Another limitation is that our algorithm operates on problems with discrete risk levels.

In practice, this is reasonable because the obstacle shadows can be discretized based on

the precision that is required. However, the number of risk levels has a substantial effect

on runtime especially with higher collision horizons. A line of future work would be to
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generalize this approach to a continuous notion of risk levels.

There is also the related direction of investigating models of uncertainty over obstacles.

We focus on the PGDF model in our hardness proofs because it captures certain desirable

characteristics and has been used in prior work. However, the PGDF model has certain

surprising characteristics, particularly near the tails of the distribution [3]. Perhaps there is a

model that is a better fit for obstacle estimates in practice. In exploring this direction, it is

important to note that we do not strongly invoke the structure of PGDF obstacles. Interesting

directions for future work also include finding a good minimal condition on the obstacle

distribution to make the problem 𝑁𝑃 -hard.

Finally, we have shown that some realistic domains tend to have small collision horizons.

An interesting open question is what properties of a problem domain determine this, and

whether we can define special classes of problems that have provably fixed collision horizon.
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