
A New Algorithm for the Optimization of
Autonomous Vehicle Routing

Abstract

In this paper I present a novel approach to the optimization of vehicle routing

in an autonomous urban transportation service. In such future transportation

systems, a fleet of robotic autonomous vehicles services passengers on de-

mand within an urban setting in an efficient manner to maximize the quality of

service (i.e. minimize waiting times). I propose a region-based model that di-

vides the area of interest into distinct geographical regions and tracks the state

of the system in a series of discrete timesteps using receding horizon control.

Second, I present an algorithm that, at each timestep, optimizes not only for the

current state but also for a number of timesteps in the future. Then, I analyze

the complexity of the model and algorithm. I propose an approximation heuristic

that can be solved in polynomial time, then I analytically prove the upper bound

of its error. Finally, I show through simulation with real-world data that my algo-

rithm significantly improves on both the state of the art and recent literature by

reducing passenger waiting times by as much as 16% compared to algorithms

in use by major dispatch companies.

1

1 Introduction

Personal mobility and congestion is an ever-growing issue in modern urban environments;

in 2010, urban congestion caused a 4.8 billion hour increase in the collective travel time of

Americans, with a total cost of $101 billion [11]. As recent research has led to the devel-

opment of vehicles that can drive autonomously [14], possible applications of autonomous

vehicles to rethink future urban transportation have been considered. One such idea has

been to maintain a fleet of autonomous vehicles that can be called on demand in place of

traditionally owned vehicles or taxi systems [16]. In this scenario, the vehicles must be au-

tonomously routed to service passengers on request and rebalance as needed. The goal

of the routing service is to optimally assign vehicles to passengers to minimize passenger

waiting times.

1.1 State of the Art

Although no such service currently exists, as the vehicles themselves are still under devel-

opment, the routing problem is similar to the taxi dispatch problem, in which passengers

request a ride and a taxi is assigned to service him or her. The current state of the art for

vehicle routing, that is, the algorithms used by leading taxi companies, typically involve

some variant of the nearest neighbor algorithm, whereby each passenger is assigned to

the nearest unassigned taxi on a first-come, first-served basis [9]. Market leaders such

as Cordic, DDS Digital Dispatch, and EzyFleet utilize the nearest neighbor algorithm, with

the addition of region-based queues to ensure fairness among drivers [2, 3, 4]. Although

this might seem to be a reasonable strategy, it is a greedy approach, and there are several

scenarios, such as the one depicted in figure 1, for which the nearest neighbor algorithm

is clearly suboptimal [6].

2

Figure 1: vi refers to vehicle i, pi refers to passenger i, and p′i refers to the destination of passenger i. v1

is assigned to p1 because it is closest, whereas the optimal strategy is for v1 to service p2, and for v2 to
service p1. The black line indicates the path chosen by the nearest neighbor algorithm, and the green line
indicates the optimal path.

1.2 Related Research

Due to the growing significance of these issues, with increasing urbanization worldwide

[13], autonomous vehicle routing has become an active area of research in recent years.

Recent publications have suggested algorithms to overcome the limitations of current

implementations, although they are yet to be implemented by taxi companies. These

include PHM , a rebalancing policy based on Markov chains designed to achieve a desired

stationary distribution [15] and NTuCab, a multiagent system whereby vehicles negotiate

to achieve minimal driving distances [10].

While these algorithms improve on the state of the art by optimizing for the entire system

as a whole instead of the greedy approach of optimizing for each individual, they also

come with a number of flaws.

NTuCab, while slightly less greedy than nearest neighbor algorithms, only optimizes for

the initial assignments. so it does not consider possible future assignments after each

vehicle finishes servicing its first passenger. As a result, it fails to account for situations

where the destination of one passenger is near the location of another. Figure 2 depicts

a scenario for which it would return a suboptimal solution.

3

Figure 2: NTuCab assigns v1 to p1 and v2 to p2, but the optimal strategy is for v1 to service p1 then p2,
and for v2 to service p3 then p4. The black line indicates the path chosen by NTuCab, and the green line
indicates the optimal path.

On the other hand, PHM assumes constant passenger appearance rates, an assumption

that incurs some error in the system as appearance rates change throughout the course of

the day. Although these errors are slight, the algorithm only considers appearance rates,

not the actual passenger distribution; any buildup of passengers in a particular region has

no effect on the resulting rebalancing policy, so the system makes no attempt to adjust for

it.

Both algorithms, as well as almost every other proposed solution, such as those dis-

cussed in [1, 7, 16, 17], enforce that a passenger that is picked up by a vehicle is serviced

directly to its destination in a single trip by the same vehicle. However, this does not al-

ways result in optimal behavior. Figure 3 depicts a scenario for which the optimal solution

does not conform to this constraint.

4

Figure 3: The optimal strategy is for v1 to carry p2 to t1, then service p1 while v2 services p2. The green line
indicates this path.

1.3 This Paper

In this paper I propose an original algorithm to address these concerns. The rest of this

paper is organized as follows: Section 2 defines a model to represent the system, Section

3 describes the steps taken to optimize the model, Section 4 evaluates and analyzes the

computational complexity of the algorithm, Section 5 proposes an approximating heuristic

that achieves a high quality solution in polynomial time, Section 6 describes the proce-

dures and results for simulating the performance of the algorithm in comparison to the

industry standard and state of the art algorithms, and Section 7 discusses conclusions

and suggestions for future research.

2 Model

Consider a network flow model whereby there exists a set of regions, each with a quantity

of vehicles and a quantity of passengers destined for each other region. The model

accounts for the state of the system through a finite series of discrete timesteps. At each

time step, a vehicle may service a passenger to any adjacent region, not necessarily

the destination region of the passenger. Upon arrival, the vehicle might continue and

service the passenger to another adjacent region, or it might drop the passenger off in

order to free itself for other actions. A passenger that is dropped off in a region other

than its destination region is then considered as part of the set of passengers waiting in

that region. It may be assumed that the time required for a passenger to get in or out

of a vehicle is negligible compared to the length of the time step. Therefore, a vehicle

that is servicing a passenger through a region is considered as identical to a vehicle and

passenger waiting in the region. Additionally, the flow of passengers is not guaranteed to

5

be balanced, so to prevent buildup of vehicles in a single region, vehicles can rebalance

to other regions without servicing passengers.

2.1 Model Constants

Suppose the area of interest is divided into n regions where N denotes the set of such

regions and |N | = n. Let wij ∀i, j ∈ N equal the number of time steps required for a

vehicle to travel from region i to region j. Let M represent the sparse directed graph of

n nodes such that node i is connected to node j if and only if a vehicle can travel from

region i to region j in a single time step (i.e. i, j ∈ M ⇔ wij ≤ 1). Note that the regions

must be selected such that M is a connected graph, that is, there exists a path between

any two nodes in M . Then, let dij ∀i, j ∈ N represent the length of the shortest path from

node i to node j in M . Also let b denote the maximum number of regions any region is

adjacent to, that is, the cardinality of the graph M .

For the purpose of modeling the future state, let F represent the set of time steps to

consider, where |F | = f , or the prediction depth.

2.2 State Variables

The model can be described by the number of vehicles and passengers in each region

and the destination distributions of the passengers at each time step. The number of

vehicles in region i ∈ N at time t ∈ F is given by vti . There must be a nonnegative integral

number of vehicles in each region, so

vti ∈ Z and vti ≥ 0 ∀ t ∈ F, i ∈ N (1)

The number of passengers that are waiting in region i and destined for region j at time t

is given by ctij. There must also be a nonnegative integral number of passengers waiting

in each region that are destined for each region, so

ctij ∈ Z and ctij ≥ 0 ∀t ∈ F, i, j ∈ N (2)

The variables V and C form the complete state of the system at each time step.

6

2.3 Decision Variables

The control decisions of this model can be described by the passengers and vehicles at

each region that transfer to each adjacent region. Let ptijk ∀i, j, k ∈ N, t ∈ F represent

the number of passengers waiting in region i and destined for region j that are serviced

to region k at time t. The number of passengers leaving a particular region must equal

the number of passengers in the region at the previous time step, so∑
k

ptijk = ct−1ij ∀ t ∈ F, i, j ∈ N (3)

In the case of rebalancing, let rtij ∀i, j ∈ N, t ∈ F represent the number of vehicles that

rebalance from region i to region j at time t. The total number of vehicles leaving a

particular region (including both rebalancing vehicles and vehicles that are servicing a

passenger) must equal the number of vehicles that exist in the region, so∑
j

rtij +
∑

k | k 6=i

ptijk = vt−1i ∀ t ∈ F, i ∈ N (4)

Note that these variables contain elements that represent the vehicles and passengers

that “travel” to the same region that they start at. These denote the vehicles and pas-

sengers that remain in place. Therefore, since a passenger that does not travel does not

require a vehicle, the number of passengers that remain in place does not contribute to

the total number of vehicles leaving the region, hence the “k 6= i” in (4). However, a vehi-

cle that remains in place is considered to be “leaving” the region because it is unavailable

to perform any other action, so it is included in (4). Vehicles and passengers may only

transfer to adjacent regions, so

ptijk = 0 ∀t ∈ F, i, j, k ∈ N, {i, k} 6∈M (5)

rtij = 0 ∀t ∈ F, i, j ∈ N, {i, j} 6∈M (6)

and there must be a nonnegative integral number of vehicles and passengers that transfer

between any two regions, so

ptijk ∈ Z and ptijk ≥ 0 ∀t ∈ F, i, j, k ∈ N (7)

rtij ∈ Z and rtij ≥ 0 ∀t ∈ F, i, j ∈ N (8)

7

2.4 Propagation of the State

The state collections V := {vti | t ∈ F, i ∈ N} and C := {ctij | t ∈ F, i, j ∈ N}
propagate solely based on the decision collections P := {ptijk | t ∈ F, i, j, k ∈ N} and

R := {rtij | t ∈ F, i, j ∈ N}. The number of vehicles in a particular region (i.e. vti) is

equivalent to the number of vehicles in that region at the previous time step (i.e. vt−1i)

minus the number of vehicles that left plus the vehicles that arrived. Define Lv(t, i) as the

number of vehicles that leave region i at time t and Av(t, i) as the number of vehicles that

arrive at region i at time t.

Lv(t, i) =
∑
jk

ptijk +
∑
j

rtij ∀t ∈ F, i ∈ N (9)

Av(t, i) =
∑
jk

ptkji +
∑
j

rtji ∀t ∈ F, i ∈ N (10)

vti = vt−1i − Lv(t, i) + Av(t, i) ∀t ∈ F, i ∈ N (11)

Similarly, the number of passengers in a particular region destined for a particular region

(i.e. ctij) is equivalent to the number of passengers in that region with the same destination

at the previous time step (i.e. ct−1ij) minus the number of passengers that left plus the

passengers that arrived. Define Lc(t, i, j) as the number of passengers destined for region

j that leave region i at time t and Ac(t, i, j) as the number of passengers destined for

region j that arrive at region i at time t.

Lc(t, i, j) =
∑
k

ptijk ∀t ∈ F, i, j ∈ N (12)

Ac(t, i, j) =
∑
k

ptkji ∀t ∈ F, i, j ∈ N (13)

ctij = ct−1ij − Lc(t, i, j) + Ac(t, i, j) ∀t ∈ F, i, j ∈ N (14)

3 Optimization

The goal of this algorithm is to optimize this model for a set of objectives. Note that the

resulting decisions are only carried out for the first timestep; at the next timestep, the

optimization is called again. As a result, due to the receding horizon, any suboptimal be-

havior resulting from the limited prediction depth would have plenty of time to be corrected

8

at later timesteps.

3.1 Feasible Sets

Here, define as Q the set of all feasible sets of [V,C, P,R], satisfying all of the above

constraints.

Q :=

{
S = [V,C, P,R]

∣∣∣∣∣ S satisfies (1), (2), (3), (4)

(5), (6), (7), (8), (11), and (14)

}
(15)

3.2 Objectives

1. Minimize the average time a passenger has to wait until it reaches its destination.

Ut(C) =
∑

ijt | i 6=j

ctij (16)

2. Minimize the distance left for passengers to travel after the final timestep.

Ud(C) =
∑
ij

cfijdij (17)

3. Minimize vehicles’ wasted time. Any time a vehicle is not transporting a passenger

is considered to be wasted.

Uw(R) =
∑
ijt

rtij (18)

3.3 Integer Linear Program

Therefore, the optimal solution can be computed by optimizing the objective functions

constrained to the feasible set. Because all constraints and objective functions are linear

and the variables are constrained to integer values, the algorithm takes the form of an

9

integer linear program.

Am :

Given v0i , c
0
ij ∀ i, j ∈ N

minimize
V,C,P,R

Ut(C) + λ1Ud(C) + λ2Uw(R)

subject to S ∈ Q

where λ1 and λ2 are small constants that correlate to the degree to which final passenger

distances and wasted time, respectively, should factor into the optimization.

Note that there will always be at least one feasible set. Consider the system whereby no

vehicles or passengers move, so the state remains constant. Because this is guaranteed

to follow the above constraints, it must be a feasible set (albeit a generally undesirable

one). Therefore, the algorithm will never fail to produce a solution.

4 Complexity

4.1 Number of Variables

Let S represent the combined system [V,C, P,R], and E(X) equal the number of elements

in variable X. Since E(P) and E(R) depend on the number of regions each region is

connected to, let k denote the average number of adjacent regions.

k =
|M |
N

(19)

E(V) = fn (20)

E(C) = fn2 (21)

E(P) = fn2k (22)

E(R) = fnk (23)

The total number of variables in the system is represented by

E(S) = f(n2k + n2 + nk + n)

= O(fn2) as f, n→∞
(24)

10

so the representation of E(S) has polynomial size. Note that k is constant with respect

to f and n because typically, the time step is selected based on the distances between

regions such that the number of connections for each region is small (around 2 to 6).

4.2 Integer Linear Programming

Because of constraints (1), (2), (7), and (8), the elements in S are all constrained to

integral values, so the resulting optimization problem becomes an Integer Linear Program

(ILP). The complexity of ILP is NP-Hard with respect to the number of variables [12], and,

by (24), the number of variables scales polynomially with n and f , so this optimization

is NP-Hard with respect to both n and f . As a result, the algorithm has an infeasible

computation time for systems with many regions, and the maximum feasible prediction

depth is low.

5 Approximation Heuristic

To solve this issue, consider a heuristic to approximate the optimal solution for the system.

By relaxing constraints (1), (2), (7), and (8) to

v′ ti ≥ 0 ∀ it (25)

c′ tij ≥ 0 ∀ ijt (26)

p′ tijk ≥ 0 ∀ ijkt (27)

r′ tij ≥ 0 ∀ ijt (28)

the problem becomes a Continuous Linear Program (LP), which can be solved in polyno-

mial time [8].

However, it is impossible for a fraction of a vehicle or passenger to transfer to another

region, so it is necessary to transform the solution to the LP to satisfy the constraints of

the ILP. Denote by e(x) the error between the variable x in the solution to the LP (S ′) and

11

the constrained solution (S). The errors are given by

e(vti) = vti − v′ ti ∀ it (29)

e(ctij) = ctij − c′ tij ∀ ijt (30)

e(ptijk) = ptijk − p′ tijk ∀ ijkt (31)

e(rtij) = rtij − r′ tij ∀ ijt (32)

A feasible solution for the decision variables at each timestep can be found by distributing

the errors of the state variables at the previous timestep, then taking the floor. The number

of vehicles and passengers that remain in place should be adjusted to compensate for the

decrease in transfers and satisfy (3) and (4).

ptijk = bp′ tijk +min(
1

b
e(ct−1ij),

1

nb
e(vt−1i))c ∀ ijkt | i 6= k (33)

rtij = br′ tij +
1

b
(e(vt−1i)−

∑
mk | k 6=i

e(ptimk))c ∀ ijt | i 6= j (34)

(33) generates feasible values by determining the errors in the quantities of both available

vehicles and available passengers, choosing the error that is most limiting, and allocating

the loss or gain evenly to each possible destination. (34) generates feasible values by

determining the error in the number of available vehicles and allocating the loss or gain

evenly to each possible destination. Taking the floor is guaranteed to be feasible because

it requires less vehicles and passengers than S ′ does. Therefore, the errors of the decision

variables are bounded by

min(
1

b
e(ct−1ij),

1

nb
e(vt−1i))− 1 < e(ptijk) ≤ min(

1

b
e(ct−1ij),

1

nb
e(vt−1i)) ∀ ijt | i 6= k

(35)
1

b
(e(vt−1i)−

∑
mk | k 6=i

e(ptimk))− 1 < e(rtij) ≤
1

b
(e(vt−1i)−

∑
mk | k 6=i

e(ptimk)) ∀ it | i 6= j (36)

e(ptiji) = e(ct−1ij)−
∑

k | k 6=i

e(ptijk) ∀ ijt (37)

e(rtii) = e(vt−1i)−
∑
j | j 6=i

e(rtij)−
∑

jk | k 6=i

e(ptijk) ∀ it (38)

The errors in the decision variables at each time step can propagated to determine the

errors in the state variables. By (11) and (14), the errors in the state variables at each

12

time step are given by

e(vti) =
∑
j

e(rtji) +
∑

jk | k 6=i

e(ptkji) (39)

e(ctij) =
∑
k

e(ptkji) (40)

5.1 Optimality of the Approximation

In this section, I analytically prove the upper bound on the error of the heuristic for the

primary objective, that is, e(Ut(C)).

Theorem 1.
e(Ut(C)) ≤ 52fnfbf+2f (41)

Proof. First note that since any solution to the ILP is also feasible for the LP, Ut(C
′) is at

least as good as that for the ILP. e(c0ij) = 0 and e(v0i) = 0 for all i ∈ N , so by (37) and (38),

the error of the initial decision variables are given by

−1 < e(p1ijk) ≤ 0 ∀ ijk | i 6= k (42)

−1 < e(r1ij) ≤ 0 ∀ ij | i 6= j (43)

0 < e(p1iji) ≤ b− 1 ∀ ij (44)

0 < e(r1ii) ≤ b2 − 1 ∀ i (45)

By (3) and (4) the error in the number of vehicles and passengers leaving each region is

given by ∑
jk | k 6=i

e(ptijk) +
∑
j

e(rtij) = e(vt−1i) ∀ it (46)

∑
k

e(ptijk) = e(ct−1ij) ∀ ijt (47)

Denote by maxx the maximum possible value of expression x, and by minx the minimum

possible value of expression x. Then let rangex = maxx−minx, or the range of possible

values of expression x. By (35) and (37), the range of possible errors in passenger

transfers is given by the following. Note that the sum of a set of elements is at most

the number of elements times the maximum element, since the mean is at most the

maximum. The result of (48) can be substituted into (49) to compute the bound in terms

13

of the range in errors of the state variables.

range
ijk | i 6=k

e(ptijk) ≤ max(
1

b
range

ij
e(ct−1ij),

1

nb
range

i
e(vt−1i)) + 1

≤ 1

b
range

ij
e(ct−1ij) +

1

nb
range

i
e(vt−1i) + 1

∀ t (48)

range
ij

e(ptiji) ≤ range
ij

(e(ct−1ij) +
∑

k | k 6=i

e(ptijk))

≤ range
ij

e(ct−1ij) + (b− 1) range
ijk | i 6=k

e(ptijk)

≤ 2b− 1

b
range

ij
e(ct−1ij) +

b− 1

nb
range

i
e(vt−1i) + b− 1

≤ 2 range
ij

e(ct−1ij) +
1

n
range

i
e(vt−1i) + b

∀ t (49)

Similarly, by (36) and (38), the range of possible errors in rebalancing is given by the

following. (48) can be substituted into (50), and (48) and (50) can be substituted into (51).

range
ij | i 6=j

e(rtij) ≤
1

b
range

i
(e(vt−1i)−

∑
jk | k 6=i

e(ptijk)) + 1

≤ 1

b
range

i
e(vt−1i) +

n(b− 1)

b
range
ijk | i 6=k

e(ptijk) + 1

≤ n(b− 1)

b2
range

ij
e(ct−1ij) +

b− 1

b2
range

i
e(vt−1i) + 1

≤ n

b
range

ij
e(ct−1ij) +

1

b
range

i
e(vt−1i) + 1

∀ t (50)

range
i

e(rtii) ≤ range
i

(e(vt−1i)−
∑
j | j 6=i

e(rtij)−
∑

jk | k 6=i

e(ptijk))

≤ range
i

e(vt−1i) + (b− 1) range
ij | i 6=j

e(rtij) + n(b− 1) range
ijk | i 6=k

e(ptijk)

≤ 2n(b− 1)

b
range

ij
e(ct−1ij) +

3b− 2

b
range

i
e(vt−1i) + n(b− 1) + (b− 1)

≤ 2n range
ij

e(ct−1ij) + 3 range
i

e(vt−1i) + (n+ 1)b

∀ t (51)

14

By (39) and (40), the ranges in errors of the state variables are given by

range
i

e(vti) ≤ max
i
e(vti)−min

i
e(vti)

≤ (max
i
e(rtii) + (b− 1) max

ij | i 6=j
e(rtji) + n(b− 1) max

ijk | i 6=k
e(ptijk))

− (min
i
e(rtii) + (b− 1) min

ij | i 6=j
e(rtij) + n(b− 1) min

ijk | i 6=k
e(ptijk))

≤ range
i

e(rtii) + (b− 1) range
ij | i 6=j

e(rtij) + n(b− 1) range
ijk | i 6=k

e(ptijk)

≤ range
i

e(rtii) + b range
ij | i 6=j

e(rtij) + nb range
ijk | i 6=k

e(ptijk)

∀ t (52)

range
ij

e(ctij) ≤ range
ij

∑
k

e(ptkji)

≤ range
ij

e(ptiji) + (b− 1) range
ijk | i 6=k

e(ptijk)

≤ range
ij

e(ptiji) + b range
ijk | i 6=k

e(ptijk)

∀ t (53)

(52) and (53) can be rewritten as a a linear transformation over the range of errors in the

decision variables.


rangeij e(c

t
ij)

rangei e(v
t
i)

1

 ≤


b 1 0 0 0

nb 0 b 1 0

0 0 0 0 1




rangeijk | i 6=k e(p
t
ijk)

rangeij e(p
t
iji)

rangeij | i 6=j e(r
t
ij)

rangei e(r
t
ii)

1


∀ t (54)

Similarly, (48), (49), (50), and (51) can be rewritten as a a linear transformation over the

range of errors in the state variables at the previous time step. (54) can be substituted in

to represent them as the result of a matrix power operation.

15



range
ijk | i 6=k

e(ptijk)

range
ij

e(ptiji)

range
ij | i 6=j

e(rtij)

range
i

e(rtii)

1


≤



1
b

1
nb

1

2 1
n

b
n
b

1
b

1

2n 3 (n+ 1)b

0 0 1




range

ij
e(ct−1ij)

range
i

e(vt−1i)

1



≤



2 1
b

1
n

1
nb

1

3b 2 b
n

1
n

b

2n n
b

1 1
b

1

5nb 2n 3b 3 (n+ 1)b

0 0 0 0 1





range
ijk | i 6=k

e(pt−1ijk)

range
ij

e(pt−1iji)

range
ij | i 6=j

e(rt−1ij)

range
i

e(rt−1ii)

1



≤



2 1
b

1
n

1
nb

1

3b 2 b
n

1
n

b

2n n
b

1 1
b

1

5nb 2n 3b 3 (n+ 1)b

0 0 0 0 1



t−1



range
ijk | i 6=k

e(p1ijk)

range
ij

e(p1iji)

range
ij | i 6=j

e(r1ij)

range
i

e(r1ii)

1



≤



2 1
b

1
n

1
nb

1

3b 2 b
n

1
n

b

2n n
b

1 1
b

1

5nb 2n 3b 3 (n+ 1)b

0 0 0 0 1



t−1

1

b

1

b2

1


≤ (5 · 5nb)tb2 = 52tntbt+2

∀ t (55)

Therefore, the range in errors for transfers is given by

range
ijk

e(ptijk) = max(range
ijk | i 6=k

e(ptijk), range
ij

e(ptiji)) ≤ 52tntbt+2 ∀ t (56)

By (16), (40), (56), and the fact that the total number of passengers in the system is

constant, the error of the primary objective is given by

16

e(Ut(C)) ≤
∑

ijt | i 6=j

e(ctij) =
∑

ijt | j 6=k

e(ptijk) =
∑
ijkt

e(ptijk)−
∑
ijt

e(ptijj) = −
∑
ijt

e(ptijj)

≤ −nbf min
ijk

e(pfijk) ≤ nbf range
ijk

e(pfijk) ≤ 52fnfbf+2f
(57)

This demonstrates that the error the heuristic incurs on the primary objective has a finite

bound that scales polynomially with respect to the number of regions, but exponentially

with respect to prediction depth. This is acceptable because the prediction depth does

not need to be expanded to accomadate larger systems, and a large prediction depth

is unnecessary because as the prediction depth increases, the increase in performance

diminishes. It should be stressed that this is an absolute worst-case bound, and that on

average, the heuristic is significantly more accurate; a better measure of the heuristic’s

average performance may be determined through simulation with real-world data. Note

that this approximation performs best when there are many vehicles and passengers per

region, as the error does not depend on the total number of vehicles or passengers, so

the error has less of an impact on the effectiveness of the routing. Also note that, as with

k, b can be considered a constant value.

6 Comparison

6.1 Experimental Design

In order to test the performance of Am, I compare it through simulation both to algorithms

used by leading taxi dispatch services and to algorithms described in recent publications.

Simulations were conducted comparing Am with the following algorithms:

1. Nearest Neighbor: Ann is a simple heuristic that assigns a passenger to the nearest

vehicle that is not already in the process of servicing another passenger. A passen-

ger that is picked up is serviced directly to its destination. This is similar to what is

commonly implemented by leading taxi companies [2, 3, 4].

2. Collaborative Dispatch [10]: NTuCab is a recently developed (2010) multiagent al-

gorithm that improves on the Nearest Neighbor algorithm by having each vehicle

17

negotiate with other vehicles over passenger assignment. The result is a set of as-

signments that minimizes the distance for all vehicles as a group rather than each

individually. Each passenger that is assigned is serviced directly to its destination.

3. Markov-based Redistribution [15]: PHM is a recently developed (2012) algorithm that

attempts to achieve a stationary distribution through Markov transitions via rebalanc-

ing. A passenger in the same region as an idle car is immediately serviced directly to

its destination, and leftover cars in regions with no passengers rebalance according

to a rebalancing policy in the form of a Markov chain.

For each algorithm, simulations were run measuring wait times of passengers over the

course of a 24 hour period, where the wait time is defined as the amount of time between

when a passenger initially notifies the system of its desire to be serviced and when the

passenger arrives at its destination. I choose to use this definition rather than the conven-

tional measure, the time until a passenger is picked up, because in Am, a passenger that

is picked up is not guaranteed to be serviced directly to its destination.

The simulations use synthetically generated passenger requests from real world taxi dis-

tributions from within the financial district of Manhattan on March 1, 2012, as described

in [17]. The area was divided into 10 regions for the relevant algorithms (Am and PHM).

Modifications were made to the simulation environment described in [17] to adapt to the

specifications required for each algorithm. In particular, the constraint that a passenger

be directly serviced to its destination was removed for Am, and the region system was

removed for NTuCab and Ann.

6.2 Results

Here, I present the average wait time with respect to time, with 20 vehicles and a dis-

cretization of an hour. I also present the average wait time between 8:00 and 11:00 A.M.

(i.e. during the peak traffic period) with respect to the number of vehicles, where the

number of vehicles is in the range [15, 30] in increments of 3.

18

Figure 4: Each algorithm simulated over the course
of an entire day.

Figure 5: The peak traffic period of the day with
varying fleet sizes.

In general, Am outperformed both the state of the art (Ann) and recently published algo-

rithms (NTuCab and PHM). It resulted in a lower average wait time for the passengers

at most times and numbers of vehicles. During the peak traffic period, Am achieved an

as much as 16%, 15%, and 12% lower average waiting time with the same number of

vehicles than Ann, NTuCab, and PHM , respectively; it required about 16% fewer vehicles

to achieve a similar average waiting time. It should be noted that, while Am achieves sig-

nificantly lower waiting times than the others when the system is under stress, (i.e. there

are not enough vehicles to efficiently satisfy passenger demand), the margins diminish as

the fleet’s ability to handle the demand increases.

7 Conclusion, Ramifications, and Future Work

7.1 Conclusion

In this paper I proposed a novel algorithm to optimize vehicle routing and assignment. By

eliminating the assumption that it is always optimal to travel directly to the final destina-

tion, our approach can address cases for which state of the art and recently published

algorithms produce suboptimal solutions. The time-dependent model allows the algo-

rithm to avoid greedy decisions, and the use of continuous linear programming as an

approximation heuristic reduces the complexity to polynomial time. I proved a worst-case

upper bound on the error of the heuristic that is independent of the number of vehicles or

19

passengers in the system, and through simulations, it was determined that this heuristic

outperforms both existing and academic vehicle routing algorithms by significant mar-

gins.

7.2 Significance

Optimal vehicle routing will have significant ramifications on the future of urban mobility

and transportation. These results suggest that the implementation of the algorithm de-

scribed in this paper can simultaneously increase passenger service rates and reduce the

number of vehicles on the road, thereby reducing both traffic congestion and carbon emis-

sions. This benefits not only the passenger, but also other drivers on the road, as well

as the environment. This is becoming more essential as society increasingly becomes

more urban [13], and as human caused global warming and climate change are on the

rise [5].

7.3 Future Research

This project opens several avenues for future research. The simulations described in this

paper were limited to the financial district of Manhattan over the course of a single day; in

the future, I would like to evaluate the algorithm’s performance over a larger area with a

greater amount of real world passenger data. Additionally, I would like to further analyze

the tradeoffs between numerical efficiency and performance as a result of varying region

sizes and timestep lengths. Finally, I would be interested in testing the algorithm’s effec-

tiveness in a real-world taxi or autonomous vehicle based transportation system.

20

References

[1] A. Alshamsi, S. Abdallah, and I. Rahwan. Multiagent Self-Organization for a Taxi Dispatch System.
8th International Conference on Autonomous Agents and Multiagent Systems, Budapest, Hungary,
2009.

[2] Cordic. Booking and Despatch. www.cordic.com/booking_and_despatch.html. 2015.

[3] DDS Digital Dispatch. All-in-One Taxi Dispatch Solution. www.digital-dispatch.com/taxibook-

overview/taxibook-all-in-one-taxi-dispatch-solution/. 2015.

[4] Dispatch Algorithm Overview. EzyFleet. ezyfleet.com/dispatch-algorithm-overview-2/. 2015.

[5] Field, C.B, et al. IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation,
and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change. 2014.

[6] G. Gutin, A. Yeo, and A. Zverovick. Traveling Salesman should not be greedy: domination analysis of
greedy-type heuristics for the TSP. Discrete Applied Mathematics, 117: 81 - 86, 2002.

[7] Jung, Jayakrishnan, and Park. Design and Modeling of Real-Time Shared-Taxi Dispatch Algorithms.
TRB 2013 Annual Meeting, 2013.

[8] N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming. Combinatorica, 4 (4): 373
- 395, 1984.

[9] D. Lee, H. Wang, R. Cheu, and S. Teo. A Taxi Dispatch System Based on Current Demands and
Real-Time Traffic Conditions. Transportation Research Record, 1882: 193 - 200, 2004.

[10] K. Seow, N. Dang, and D. Lee. A Collaborative Multiagent Taxi-Dispatch System. IEEE Transactions
on Automation Science and Engineering, 7 (3): 607 - 616, 2010.

[11] D. Schrank, T. Lomax, B. Eisele. TTI’s 2011 Urban Mobility Report. Texas A&M Transportation Insti-
tute. 2011.

[12] S. Skiena. Integer Programming. The Algorithm Design Manual. Springer-Verlag: New York, 1997.

[13] United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization
Prospects: The 2014 Revision, Highlights. 2014.

[14] C. Urmson. Green Lights for our Self-Driving Vehicle Prototypes. Official Google Blog. googleblog.
blogspot.com/2015/05/self-driving-vehicle-prototypes-on-road.html. 2015.

[15] M. Volkov, J. Aslam, and D. Rus. Markov-based Redistribution Policy Model for Future Urban Mobility
Networks. emphInternational IEEE Conference on Intelligent Transportation Systems, Anchorage, AK,
2012.

[16] R. Zhang and M. Pavone. Control of Robotic Mobility-On-Demand Systems: a Queueing-Theoretical
Perspective. Robotics: Science and Systems Conference, 2014.

[17] R. Zhang, F. Rossi, and M. Pavone. Model Predictive Control of Autonomous Mobility-on-Demand
Systems. Robotics and Automation (ICRA), 2016 IEEE International Conference.

21

