
Predictive Reachability for Safe
Interaction in Social Environments

Luke Shimanuki

Massachusetts Institute of Technology
lukeshim@csail.mit.edu

Abstract. Safe control in the presence of other human agents is a challenging
but critical requirement for robots in many domains. Reachability-based control
schemes provide formally verifiable safety certificates, but force overly-conservative
robot behavior in order to avoid all possible behaviors of the other agents. On the
other hand, approaches that attempt to predict the other agents’ behaviors then
plan around them grant the robot greater flexibility, but the safety of such poli-
cies is difficult to quantifiably measure outside of real-world testing. We present
a framework integrating these two approaches: we leverage reachability analysis
to guarantee safety, but when computing the reachable sets we restrict the behav-
iors of the other agents to a predicted set of policies. These policy sets encode the
idea that people’s interactions and negotiations are governed by an implicit set
of social rules around how regions of space are claimed or yielded. Because the
resulting controller is safe as long as the other agents’ behaviors are represented
in the predictions, its safety can be evaluated (or optimized in a learning setting)
offline on a dataset of observed trajectories. We implement and evaluate a simple
prediction model under this framework in an example driving domain.

Keywords: human-robot interaction, planning under uncertainty, decision and
game theory, collision avoidance

1 Introduction

The goal of safe planning and control is generally to reach some desired state without
colliding with any obstacles. Unfortunately, this gets complicated when the obstacles
can move, especially if such movements are based on partially observable processes
(e.g. the internal state of the mental processes of a human the robot is interacting with).

Reachability analysis has been demonstrated to provide policies that are provably
safe regardless of the behavior of the other agents [2, 26, 13, 6, 24]. However, these poli-
cies must be overly conservative, and oftentimes the problem is unsatisfiable (thereby
losing any safety guarantees), since in crowded environments another agent can nearly
always force a collision. In order to behave in a natural way, the robot must be able to
reason about what the other agents are likely to actually do, rather than everything they
could possibly do.

The standard approach is to model how the other agents move, predict where they’re
going to go, and then use a time-dependent motion planner to avoid where they are
expected to be. Unfortunately, there has been no demonstrated planning algorithm op-
erating on these predictions that accounts for the distributional differences between the
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predictions and the real-world to provide sufficient safety guarantees for these meth-
ods without extensive real-world testing. This is because offline evaluation based on
recorded behaviors does not capture how other agents react to the robot’s actions, and
simulators do not necessarily accurately reflect real-world human behavior.

We propose a different paradigm which can be evaluated offline and still provide
safety guarantees. There are two problems that make predicting trajectories ill-formed:
unobservability and interactivity. To handle interactivity, we will predict policies rather
than fixed trajectories. To handle unobservability, we will predict sets of policies rather
than single policies — these sets will implicitly represent a generalization of ϵ-shadows
[4, 20] (also known as sigma hulls [22] or risk contours [3]) to obstacle policies instead
of stationary obstacles. We know that the correct joint policy over all agents will avoid
collisions, so one evaluation metric would be the number of situations in an observed
dataset where a collision would be possible given that every agent follows a policy from
the predicted set. And since we need the predictions to actually match reality, the other
evaluation metric would be the number of situations in the dataset where an agent’s
actually observed behavior deviates from the policy set.

To illustrate with some trivial examples, consider the policy set where every agent
is stationary. Then the collision rate would be zero, since stationary agents do not col-
lide. But the deviation would be high, because nearly all the time, there will be a non-
stationary agent in the data. In the other extreme, consider the policy set where every
agent is allowed any possible movement. Then the collision rate would be high, because
a collision would always be achievable by some assignment of policies. But the devi-
ation would be low, because anything that was actually observed fits within the policy
set. An ideal policy set is then one that is narrow enough to prevent collisions but broad
enough to contain every actual observation. In Section 3 we prove that a robot following
a policy from such a set will collide at most as frequently as the policy set either allows
a collision or fails to capture an actual human behavior.

To motivate this approach, we construct a simple policy set in a manner similar to
reachability analysis that can be proven to never allow collisions. A controller can then
ensure safety by running a conventional controller optimizing some objective, checking
whether the chosen action deviates from the policy set, and if it does deviate, falling
back to a safe default policy. The default policy is guaranteed to be safe because the
policy set is constructed to ensure that any action can be followed by the default policy
without colliding (except for at initialization, when instead the controller will need to
exhaustively enumerate or sample candidate actions to ensure that a safe action is found
if one exists). The controller will only need to resort to the fallback default policy as
often as the policy set fails to contain the desired non-conservative action, so a low em-
pirical deviation from observed behaviors would demonstrate that this policy set allows
for non-conservative robot behavior. We emphasize that the probability of deviance for
such a policy set is easily evaluated offline, and translates to online safety guarantees as
long as the recorded dataset is sampled from the same distribution.

We implement this method for an autonomous driving domain and construct a sim-
ple example policy set for which we demonstrate low deviance over the inD dataset [8].
The inD dataset [8] was chosen due to its availability, size, complexity of traffic (large
unsignalized intersections), and precision of ground truth labels.
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2 Background

2.1 Motion Forecasting

A key prerequisite for safe planning is having some notion of the other agents’ future
behavior. By far the most common form this takes is predicting trajectories or distri-
butions over trajectories for each agent, which are then evaluated by measuring how
closely the predicted trajectories match those observed in real-world recordings using
some distance metric. There is a wide range of research in this area, but most recent
state-of-the-art results employ large neural networks [27, 19], many explicitly model-
ing intermediate variables such as intent [11, 41] and interactions [41, 12]. These are
trained via standard learning algorithms from recorded trajectories. However, as the
prediction horizon increases, the error increases dramatically. This is unavoidable, as it
reflects the actual variance in the real world, since the effect of multimodal outcomes
becomes more prominent at longer horizons. Hence, these tools often only provide suf-
ficient safety guarantees at low horizons (e.g. often evaluated up to only 2-3 seconds),
before the multimodal complexities take effect.

Our work gives up on attempting to predict specific trajectories and instead predicts
sets of policies, which can capture this variance, as well as the interaction between
different agents. This allows for results that scale well to much longer horizons.

2.2 Planning under Uncertainty

Approaches for planning in the presence of other agents typically falls into one of three
camps. The first characterizes the domain as a single agent avoiding collision with other
obstacles with motion governed by some partially observable process. A common for-
malism for describing such a domain is a partially observable Markov decision process
(POMDP). There is a wide body of research on solving these problems to varying de-
grees of generality [7, 9, 30, 10, 29, 16, 39]. Unfortunately, these approaches tend to
scale poorly with dimension or complexity of the interactions between agents, as the
problem is in general PSPACE-complete.

The second treats the problem as a multi-agent game theory problem, taking the
assumption that each agent is maximizing some known utility function and then either
estimating the optimal or equilibrium joint policy [32, 15, 5, 23] or ordering the agents
using heuristics and then allowing each to select its optimal move given the moves of
the prior agents [33, 25].

The third and final category is learning from real-world recordings. Typically these
approaches do not explicitly model the unobservable structure of the problem, instead
relying on the learning process to infer these kinds of reasoning from the data. The
different methods for this kind of approach are highly diverse and take direction from
many different subfields of machine learning, but some common patterns include in-
verse reinforcement learning [18, 1, 42] and end-to-end planning or imitation learning
methods [38, 37, 40, 31].

Our work draws from all three of these paradigms, allowing each agent to make its
decisions by using heuristics on a highly structured POMDP, inferring common motion
patterns from real-world data, and then providing safety guarantees based on a game
theoretic analysis.
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2.3 Formally Verified Controllers

Analytical proofs of safety following synthesis [28, 21] or formal verification [35, 14]
techniques have met with some success, but unfortunately they require known models
of the world, and so do not scale up to more complex systems involving interactions
between agents. In the absence of knowing exactly how the world will evolve, we are
left with considering all possible ways it could potentially evolve. Reachability-based
approaches, including open-loop planning around possible future states of other agents
[2, 26] and closed-loop control that always ensures that there exists a policy that will
avoid collision regardless of the behavior of other agents [13, 6, 24] do provide safety
guarantees in these domains, so long as a plan is found. However, these result in overly-
conservative behavior in crowded settings, since the other agents can nearly always
force a collision regardless of evasive robot behavior, and in particular, they can provide
no guarantees that a plan will be found or that the robot can act safely otherwise.

Our work follows a similar path as the closed-loop control approaches, but it instead
restricts the behavior it expects from the other agents to allow for less conservative
robot behavior. This is safe under the assumption that there exists some set of social
rules limiting human behavior, and the validity of such a set of rules can be empirically
verified offline. However, this does come at the cost of not guaranteeing safety in the
rare instance of another agent intentionally trying to force a collision.

2.4 Evaluating Interactive Systems

It remains an open question how best to evaluate an interactive system to provide formal
safety guarantees, as it has proven to be an extremely difficult objective to measure in
many cases [34].

The alternative to formal safety certificates is empirically evaluating safety on a
large number of potential situations sampled from the real-world distribution. There are
three common methods of generating the motions of other agents for such an evalua-
tion. The first, and most ideal, is real-world testing [36]. With sufficient time in the wild,
this provides a good picture of how safe the planning system is. However, it is slow and
costly, in terms of equipment, manpower, and risk of something going wrong. Evalu-
ating via testing in the wild is not an option for most labs and even many companies
researching domains of this kind, and it is especially difficult for any learning system to
directly optimize over this metric in high-risk domains. If we can’t test in the real world,
another option is simulation [7, 16, 39]. However, this is inherently circular because the
simulated motions of other agents must be derived from some computational process
that does not necessarily reflect reality. A planner that achieves safety in this simulated
domain has only demonstrated that it is able to predict and respond to the process gov-
erning the simulation, rather than real-world behaviors, and so we must then verify the
accuracy of the simulator itself, which brings us back to the original problem.

The last option is to record real human behavior, but then allow the planner to
change what the robot does offline [38, 17]. While this seems to be the best option
available to the average researcher, it is limited by its inability to capture how other
agents will respond to different robot actions. For autonomous driving, which is an ex-
ample of an interactive domain, Houston et al. [17] find that 85% of situations requiring
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intervention (e.g. collision) under this evaluation paradigm are at least in-part due to the
non-reactivity of the other agent motions. It is impossible to compute in how many of
those a collision would have actually occured without being able to predict the agent
motion in the counterfactual case, that is, what the other agent would have done had
the robot done something else. Hence, up until now to the best of our knowledge, real-
world testing has been the only way to provide statistical bounds for the performance
of an interactive system, with the offline options often used in its place for cost reasons,
but failing to provide the same guarantees.

Our work provides an analytical proof of safety for a particular model of the world
which can then be compared against real-world data offline to provide quantitative
safety guarantees for the domain in which the data was generated.

3 Problem Definition

3.1 Overview

As with most decision making problems, this class of domains can be described as a
partially observable markov decision process (POMDP). For the purpose of this paper,
we assume that all truly random processes (e.g. quantum effects) are insignificant, leav-
ing us with a deterministic POMDP, i.e. one where the transition model is deterministic
and hence all perceived randomness stems from the uncertainty over the unobservable
state. Let O denote the observable state space for a single agent, including the pose,
momentum, shape, and anything else that defines how it can move and interact with
other agents (in particular, this assumes that the perception system can perfectly esti-
mate these attributes of all other agents), and let Π denote the unobservable state space
including information such as where it wants to go or how it plans to get there. Let n
be the number of agents (N = {1..n} being the set of agents) and τ be the number
of observed timesteps. Suppose that each agent’s behavior is fully described by a fixed
policy π : H → A, where H is the joint observable state space history Onτ , and A
is the action space for a single agent, typically actuator settings for the duration of a
timestep. Then the unobservable state space of an agent captures some space of such
policies, that isΠ ⊆ H → A. In order to retain the Markov property, we restrict τ to be
upper bounded by some constant (the examples in this paper require just 3), and so the
full state space of the POMDP is Onτ ×Πn−1 (the ego policy is not part of the state).
Let us further suppose that the transition model for a single agent M : O × A → O is
fully known and independent of the state and actions of other agents, and that there is
a unique action that leads from any given state o1 to o2. For situations where it is not
unambiguous, we specify h(i) as the history h but with agent i treated as the ego-agent,
that is, the one that is being controlled.

Then the problem we would like to solve can be informally described as

Problem 1 (Interaction Problem). Given the current history h ∈ H and a goal state
g ∈ O (describing just the robot), find a policy π ∈ Π minimizing the probability that
the goal is not reached or the robot collides with another agent.

Under this problem definition, the evolution of the state is fully determined by the ini-
tial observable state, the policy chosen for the ego-agent, and the unobservable policies
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of all of the other agents. Then if the policies of all the other agents were known, it is
trivial to determine whether a candidate policy would succeed (i.e. reach the goal with-
out colliding with another agent), and hence this is equivalent to a traditional motion
planning problem, albeit one with an exceedingly large state space since each action the
ego-agent takes affects the trajectories of the other agents. Given that the policies of the
other agents is generally not known though, then if we had even just a distribution over
them that we could sample from, then we could still estimate the probability that a can-
didate policy reaches the goal or collides with another agent by sampling policies for
the other agents and counting how frequently the candidate policy is successful. How-
ever, the problem that we would like to address in this paper is the one where not even
the distribution over policies is known. Since the policies of the other agents are usually
generated by a complex and opaque process (i.e. their brain) that is just as unobservable
to us as the engineers as it is to the ego-agent we are trying to program, we are not
able to observe even samples from this distribution. What we can do is select a policy
for the ego-agent, put it out in the real world (thereby sampling a state from the distri-
bution, even if we can’t observe it), and then observing the actions each other agent’s
policy chooses in that specific state. Unfortunately, doing so is rather slow, expensive,
and likely to lead to human injury or property damage unless the selected policy is actu-
ally safe, and so online methods (for either evaluation or direct learning) are not viable
under most engineering teams’ resource constraints. This conundrum has led towards
attempts to learn approximate models of this distribution as best we can using imita-
tion learning or similar offline methods on recorded trajectories [27, 19, 11, 41, 12],
and then the learned distribution could be used in traditional planning or POMDP algo-
rithms. However, in many domains, it has proved difficult to learn a sufficiently close
approximation of the distribution, and even moreso to quantify how close the learned
distribution is to the true distribution, which is required in order to provide any sort
of probabilistic guarantees. We are optimistic that the field will continue to progress
along this line of research, but in the meantime we propose an orthogonal direction that
to the best of our knowledge has not yet been explored as thoroughly. That is, rather
than learning the state distribution then checking whether a given policy is safe with
respect to it, instead construct a constraint on the ego and other agent policies that guar-
antees collision avoidance (in the vein of multi-agent cooperative systems), and then
check the frequency that an agent violates that constraint (and in the future, optimize
the constraint to minimize the frequency of violation while still disallowing collision).

3.2 Policy Sets

In uncertain but unreactive motion planning domains where exact obstacle distributions
are either unknown or difficult to reason about, one approach that has been proposed is
to instead use ϵ-shadows [4, 20], which are task-space volumes that contain the obstacle
with at least a certain probability. We extend that concept to the kind of interactive
domains we’ve been discussing here, resulting in the following definition.

Definition 1 (ϵ-policy-shadow). An ϵ-policy-shadow for agent i is a mapping from an
observed history h(i) ∈ H to a region in task space at the next timestep that fully
contains agent i with probability at least 1− ϵ. It is equivalent to the union of volumes
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agent i could occupy at the next timestep if it were to follow a policy within a policy set
P ⊂ Π where the probability that agent i is following a policy not in P is at most ϵ.

Using this idea, we can reframe our objective using the following definitions.

Definition 2 (deviant). A set of policies P ⊂ Π is deviant from a history h ∈ H over
a given time period [τ1, τ2] if for any timestep τ ∈ [τ1, τ2], any agent i took an action
a ∈ A during that time period for which there does not exist a policy π ∈ P such that
π(h

(i)
τ ) = a, where h(i)τ denotes the truncated history up to timestep τ .

Definition 3 (collidable). A set of policies P ⊂ Π is collidable over a history h(i) ∈ H
and a given time period [τ1, τ2] if there exists an assignment of policies from P to each
agent such that simulating forward starting at h(i)τ1 for τ2− τ1 timesteps results in agent
i colliding with some other agent.

Problem 2 (Offline Interaction Problem). Given a dataset of histories sampled from the
distribution of interest, find a policy set P ⊂ Π minimizing the number of histories
over which P is deviant or collidable. Then select a policy π ∈ P such that a particular
goal state g ∈ O is reached starting from a particular history h ∈ H .

This may seem like a strange objective, but it turns out that solving Problem 2 also
solves Problem 1. Consider the 2 metrics in Problem 1. First, we observe that if the
goal is something an agent in the dataset would have had as a goal, then that agent
would likely be recorded as reaching the goal, and so either P contains a policy that
leads to the goal or it is deviant. Second, we upper bound the probability that a collision
is possible by following a policy in P .

Theorem 1. The total risk of collision R of following a policy in P ⊂ Π is upper
bounded by C +D, where C is the probability that P is collidable, and D is the prob-
ability that P is deviant.

Proof. Consider a situation for which following a policy in P leads to collision. If every
other agent is also following a policy in P , then by definition this is a situation where
P is collidable. If some agent is not following a policy in P , then by definition this is a
situation where P is deviant. Then the probability of collision is upper bounded by the
sum of the probability that P is collidable and the probability that P is deviant, hence
R ≤ C +D.

Short aside: we can think of the probability that P is not deviant as the recall (since it
measures how many actual behaviors are represented), and the probability that P is not
collidable as the precision (since they are measuring how well the model excludes bad
outputs). Therefore we could consider measuring a variant of the F1 score. However,
the harmonic mean in this case doesn’t mean much intuitively, whereas the sum upper
bounds the risk of collision, so the sum turns out to be a nicer metric to optimize for.

Representing sets of policies is fairly difficult, and moreso checking whether any
contained policy allows collision, especially since the set is usually infinitely large.
While under certain assumptions, this can be approximated by sampling a large number
of policies and verifying that none of them allow collision, this is not foolproof, and it
is trivial to construct policy sets for which policies that lead to collision always exist but
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are rarely sampled (e.g. suppose there are 10 agents and each is allowed to teleport up
to 1000 meters — this policy set is always collidable, but the odds that a pose sampled
for one agent would be in collision with that for another agent is small because of the
large sample space). Instead, we will construct a policy set that by definition is never
collidable. Then, this policy set will be evaluated solely based on its deviance.

Problem 3 (Non-collidable Interaction Problem). Given a dataset of histories sampled
from the distribution of interest, find a policy set P ⊂ Π that is never collidable and
minimizing the number of histories over which P is deviant. Then select a policy π ∈ P
such that a particular goal state g ∈ O is reached starting from a particular history
h ∈ H .

4 Collision-free Policy Set

We now construct a set, first in very general terms that can be applied to any interaction
domain with any set of priors, then a specific example for a 2D navigation domain.

4.1 A Parameterized Policy Set

We define a space Pϕ,π0
of policy sets parameterized by 2 parameters. The first param-

eter is a claiming map ϕ : H × N × T × Rd → R indicating the degree to which a
given agent claims a given point in task space Rd for a particular timestep (T is the set
of timesteps). If ϕ(h, i, τ, x) > ϕ(h, j, τ, x) for each other agent j, then agent i is con-
sidered to claim x at time τ (and hence no other agent should occupy that space-time).
From this scoring function we can derive a partitioning of T × Rd into disjoint sets,
denoted ψ(h(i)) for each agent i. An example of a partitioning resulting from a specific
claiming map is illustrated in Figures 1 and 2, although we note that the results in this
section equally apply to any claiming map. The second parameter is a default policy
π0 ∈ Π . Each agent will ensure that it is always able to safely begin following π0 and
that each other agent can safely begin following π0 at any timestep. Furtheremore, ev-
ery agent following π0 must lead to a steady state within a known time horizon, after
which this steady state must be known to be safe for eternity (e.g. if the steady state is
stationary, every other agents’ default trajectory must not collide with it). The π0 must
also not depend on the state of any other agent, and hence can be evaluated to generate
a trajectory prior to knowing the actions of the other agents.

The resulting policy set is then simple to construct. π ∈ Pϕ,π0
iff the following

conditions hold, starting from some history hτ :

– Simulating forward the robot agent i following π starting at state h(i)τ for a single
timestep does not collide with any point x ̸∈ ψ(h

(i)
τ−2).

– Simulating forward the robot agent i following π starting at state h(i)τ for a single
timestep and then executing π0 for η − 1 timesteps does not collide with any point
x ̸∈ ψ(h

(i)
τ−1).

– Simulating forward another agent j following π starting at state h(j)τ for a single
timestep does not collide with any point x ∈ ψ(h

(i)
τ−2).
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– Simulating forward another agent j following π starting at state h(j)τ for a single
timestep and then executing π0 for η − 1 timesteps does not collide with any point
x ∈ ψ(h

(i)
τ−1).

Here we use η to denote the time horizon, which must be at least as long as it takes for
the default policy to reach steady state. Informally, this is basically saying that the robot
is allowed to move anywhere in space-time that it claimed both 2 timesteps ago and 1
timestep ago (the intersection of these regions), as long as it ensures that it can execute
the default policy afterwards without leaving the region it claimed 1 timestep ago, and
that every other agent is allowed to do the same but with the complement of the robot’s
claimed region. The reason why the policy set is assymetric is because we are measuring
only how often the robot in question is in collision. If our objective was to minimize all
collisions regardless of which agents were involved, then we could restrict every agent
to their specific claimed region. We restrict the policies to act based on information at
least one timestep old because neither humans nor computers can actually act on new
information immediately. The timestep would then be set to the combined input and
processing lag of the decision-making system. Examples of policies that are contained
and not contained in this set for a particular initial state and claiming map for a one-
dimensional space are shown in Figure 3.

Fig. 1. An example partitioning in a 2D space
at a particular time. Each agent’s state at time
τ+δ given the default policy (depicted as a tra-
jectory following the dotted line), along with
the corresponding partitioning. Each agent’s
claimed region is the region of space that is
closer to it’s footprint at time τ + δ than that
of any other agent. The states at time τ are in
dark gray, the states at time τ + δ are in light
gray, and the dotted lines divide the space at
time τ + δ into disjoint regions.

Time

P
os
iti
on

τ τ+η

Fig. 2. An example partitioning in a 1D space
over time, where each agent is a point robot.
The solid curves are the trajectories resulting
from the default policy (depicted here as a
stopping policy) for each agent. The dashed
curves divide the space-time into the regions
claimed by each agent.

Now we show that this policy set does not allow for collisions.

Theorem 2. Pϕ,π0
is not collidable for any history h(i) and time period [τ, τ + η].
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Time
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τ τ+1 τ+η

A

B
C

D

τ 1-

Fig. 3. We are currently trying to decide controller settings for timestep τ based on observations
up to time τ−1 in a one-dimensional domain. Suppose the dotted line represents the upper border
of ψ(h(i)

τ−1) and the dashed line represents the upper border of ψ(h(i)
τ−2). Up to time τ is drawn

the historical trajectory in addition to the expected trajectory for timestep τ − 1, since the action
for that timestep was already chosen at the previous timestep. Then for timestep τ there are the
trajectories produced by four example policies. Each of these is followed by the default policy
(depicted here as a stopping policy) from time τ + 1 to τ + η. Policy A is not contained in the
policy set because it exceeds ψ(h(i)

τ−2) during timestep τ . Policy B does not exceed ψ(h(i)
τ−1)

or ψ(h(i)
τ−2) during timestep τ , but the default policy in the following η timesteps does exceed

ψ(h
(i)
τ−1), so Policy B is also not contained in the set. Policy C does not exceed ψ(h(i)

τ−1) or
ψ(h

(i)
τ−2) during timestep τ , nor does the subsequent default policy exceed ψ(h(i)

τ−1), so Policy C
is contained in the set, even though the subsequent default policy does exceed ψ(h(i)

τ−2). Policy
D does not exceed ψ(h(i)

τ−1) or ψ(h(i)
τ−2) during timestep τ or in the subsequent default policy,

so it is also contained in the set.
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Proof. Suppose the robot agent i can execute a policy in Pϕ,π0
for a single timestep

starting at τ1, where τ ≤ τ1 ≤ τ + η. Then each other agent is either also executing
such a policy or the default policy; this is guaranteed to not be in collision because
agent i avoids each other agent j’s ψ(h(j)τ1−1), including any possible default policy.
Suppose agent i cannot execute such a policy. Then it can execute the default policy,
which is guaranteed to not collide with such a policy for any other agent because each
other agent avoids ψ(h(i)τ1−1), which contains agent i’s default policy. Agent i’s default
policy starting at τ1 cannot collide with another agent j’s default policy also starting at
τ1 because at time τ1 − 1 both agents selected trajectories such that an ensuing default
policy is contained in ψ(h(i)τ1−2) and its complement, respectively, which are disjoint. If
agent i initiates a default policy at τ1 and some agent j initiates a default policy before
τ1, then at τ1 − 1 agent i chose a trajectory that can be followed by a default policy
at time τ while staying within ψ(h(i)τ1−2), which cannot intersect with any other agent’s
default policy starting at τ1−1. If no such trajectory could be found, then agent i would
have executed the default policy at τ1 − 1, and by induction we can see that the only
situation where agent i’s default policy can collide with any other agent’s default policy
is if those were the initial conditions, in which case the set of feasible actions will be
empty, thereby still not allowing a collision, but instead being deviant in this instance.

Therefore, the overall risk of Pϕ,π0
is its rate of deviation.

4.2 Policy Selection

Now that we have a policy set Pϕ,π0 that is safe whenever it is not deviant, the remaining
task is to select a policy π ∈ Pϕ,π0 for a particular initial state within a scene. As defined
above, Pϕ,π0

allows the ego-agent i to take any action that keeps its footprint at the
next timestep within ψ(h(i)τ−2) and such that following π0 until steady state is reached
keeps its footprint within ψ(h(i)τ−1). For a given candidate action, it is straightforward
to evaluate whether it violates either of these constraints. Then a simple policy could
initially enumerate or sample potential actions, ordered or weighted by how well they
approach the goal, and then selecting the first action that does not violate the above
constraints. Then, for future timesteps, it can generate candidate actions from any other
(potentially unsafe) controller or set of controllers, which presumably optimizes for
reaching the goal, then pick a candidate action that does not violate the constraints, or
the default policy (which is guaranteed to satisfy the constraints if the initial timestep
was successful) if none exist.

We note that the probability that Pϕ,π0 is deviant upper bounds the probability that
no such policy exists for goals that the agents in the recorded scenes are following.
Hence, as long as Pϕ,π0

can be shown to have deviance at most ϵ over the policy distri-
bution of interest, such a policy will be found with probability at least 1 − ϵ, and that
policy will be safe with probability at least 1− ϵ for scenes and goals sampled from the
same distribution the dataset was from.
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5 Example Implementation & Evaluation

We will now provide details for a specific domain that we will demonstrate this ap-
proach on.

5.1 Domain

We consider the autonomous navigation problem, in which each agent, including the
ego-agent, is a single-link convex rigid body in two or three dimensions, and the goal is
for the ego-agent to reach a particular region by a particular time. Each agent’s motion
is potentially non-holonomic and constrained by standard Newtonian mechanics, with
limits on the magnitude of acceleration they can apply.

5.2 Parameter Details

Suppose simulating an agent i forward following π0 starting at state h(i)τ for j timesteps
results in agent i being centered at point y0 ∈ Rd. Then we define ϕ(h, i, τ+j, x) as the
negative distance from x to the footprint of agent i at pose y0. Example partitionings
resulting from this scoring function are depicted in Figures 1 and 2. Informally, this
scoring function allows an agent to move anywhere near the trajectory followed by its
default policy, so long as that for another agent would not be even closer.

For the default policy π0, the simplest option is a stopping policy. In particular,
we define πk to be the policy in which the agent will start moving along its current
kinematic curve (constant curvature) and slow down with a fixed deceleration until it
stops. This policy is illustrated in Figure 4. We note that the behaviors permitted by
Pϕ,πk

are not limited to those described by πk itself. πk merely provides reference
trajectories from which we can infer the degree to which a given agent has a claim on
a particular region of space-time. Hence, the resulting policy sets can generalize to a
broader set of policies so long as no other agent has a stronger claim on the regions of
space-time that would be occupied.

Note that the results in Section 4.1 hold regardless of our choice of π0 and ϕ. The
end goal would be to choose these parameters to minimize deviation. We expect that
explicitly reasoning about dynamics models, environment geometry and semantics (e.g.
in traffic domains, lanes would be a significant factor), and interactions between agents
would lead to better performance, as would learning the parameters by directly opti-
mizing over a training dataset. Nevertheless, even with our overly simplistic model, we
are still able to achieve relatively strong safety guarantees.

5.3 Empirical Results

We evaluate our method on the inD dataset [8], which contains recorded trajectories for
traffic participants at various intersections. We compute the deviance over every vehicle
(cars and trucks, ignoring bicycles and pedestrians) that moves at least 5 meters (mostly
ignoring parked vehicles), and we remove segments within 5 seconds of collisions in
the ground truth, assuming that those were due to slight labeling error, as well as at the
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Fig. 4. The default policy πk. The trajectory
maintains a constant longitudinal deceleration
and angular velocity, following a circular path
based on the centripetal acceleration at the cur-
rent state.

Fig. 5. An example intersection in the inD
dataset [8] with recorded agent trajectories.
Rendered by the inD Dataset Python Tools.

end of trajectories so we are not predicting beyond what has been recorded. The horizon
η was set to 10 seconds, leaving sufficient time for any of the agents to come to a stop,
and the timestep was set to 80ms, a reasonable amount of time for a computer to react
(2 frames of the dataset, which is recorded at 25Hz). An example intersection present
in the dataset is depicted in Figure 5.

Starting from a uniform prior, we found the posterior belief for the deviance ofPϕ,πk

over 10-second long episodes to be Dϕ,πk
∼ Beta(128, 10462), with a MAP of 1.20%,

and 99.7% confidence interval Dϕ,πk
≤ 1.52%, implying with high confidence that

this controller will fail or act unsafely on average at most every 657.9 seconds (∼ 11
minutes) when sampling scenarios from the distribution that generated the dataset.

6 Conclusion and Future Work

We have presented a compromise between the absolute but limited safety provided by
reachability approaches and the non-conservative behavior allowed by systems relying
on predictions.

Specifically in the context of our example autonomous driving domain, we have
shown that even a rudimentary model with few priors around motion models and en-
vironmental semantics can achieve a fairly low risk of collision or failure. While the
performance is still far worse than human-level and not remotely deployable in pro-
duction environments, we believe that it will not be difficult to design more nuanced
models in the future that are able to achieve very low deviance with high confidence.
These extensions could include, but are not limited to, replacing our model’s heuristics
with parameterized functions that can then be learned to minimize deviance. For exam-
ple, πk could naturally be replaced with any trajectory-generating model (e.g. those in
[18, 1, 42, 38, 37, 40, 31]) and then fine-tuned by optimizing over the resulting deviance.
Alternatively, or in addition, ϕ could be replaced with a cost-map-generating model (e.g.
that listed in [38]) and similarly fine-tuned to minimize the resulting deviance. Doing
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so would leverage the expressivity and performance of these existing approaches while
still producing probabilistically-sound safety guarantees. Unfortunately, the deviance
calculation is not differentiable, and so it may be more prudent to select simpler models
with lower dimensionality unless an alternative efficient learning algorithm is found.

More broadly, our core contribution is a domain-agnostic approach for interacting
with social agents, and in particular, one whose safety can be evaluated and improved
upon offline. It also opens the door for various new directions for future work along this
paradigm. We have presented only one particular (albeit parameterized) non-collidable
policy set, and so we expect that an alternative non-collidable policy set based on a
different framing of the negotiation problem might lead to better results for certain
classes of domains. As for the specific one presented here, there is room for further
development of the parameters ϕ and π0, although we expect that selecting these will
tend to be domain-dependent, such as with the extensions proposed above. Because the
deviance can be evaluated offline, the parameters can be learned and evaluated based
on domain-specific data. On the controller side, since the policy set itself acts more
as a constraint rather than as an actual controller, designing controllers that explicitly
optimize some objective subject to such a constraint could lead to better performance
in risky situations, rather than always falling back to the default policy. Finally, our
approach could be extended to integrate perception or dynamics uncertainty to better
handle real-world environments.
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