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Abstract
We consider the problem of motion planning in the presence of uncertain obstacles, modeled as polytopes with Gaussian-
distributed faces (PGDF). A number of practical algorithms exist for motion planning in the presence of known obstacles
by constructing a graph in configuration space, then efficiently searching the graph to find a collision-free path. We show
that such an exact algorithm is unlikely to be practical in the domain with uncertain obstacles. In particular, we show that
safe 2D motion planning among PGDF obstacles is NP−hard with respect to the number of obstacles, and remains
NP−hard after being restricted to a graph. Our reduction is based on a path encoding of MAXQHORNSAT and uses
the risk of collision with an obstacle to encode variable assignments and literal satisfactions. This implies that, unlike in
the known case, planning under uncertainty is hard, even when given a graph containing the solution. We further show
by reduction from 3-SAT that both safe 3D motion planning among PGDF obstacles and the related minimum constraint
removal problem remain NP -hard even when restricted to cases where each obstacle overlaps with at most a constant
number of other obstacles.

Keywords
Completeness and Complexity, Motion and Path Planning, Obstacle Uncertainty

1 Introduction

Navigation under uncertainty is one of the most basic
problems in robotics. While there are many methods to plan
a trajectory between two points in a known environment
with strong theoretical guarantees, few of them generalize
to obstacles with locations estimated by noisy sensors. It has
proven much harder to provide strong completeness, runtime,
and optimality guarantees in this setting.

While some of the original work addressing planning
under uncertainty was able to capture the additional richness
of this problem by modeling it as a partially observable
Markov decision process (POMDP) (Cassandra, Kaelbling
and Kurien 1996), it has proven difficult to solve POMDPs
for complicated real world problems despite large advances in
POMDP solvers (Kurniawati, Hsu and Lee 2008; Somani, Ye,
Hsu and Sun Lee 2013). In fact, solving POMDPs is PSPACE-
complete in the finite horizon and undecidable otherwise,
suggesting that it likely not possible to find a general, efficient
algorithm for solving POMDPs (Papadimitriou and Tsitsiklis
1987).

Luckily, navigating among uncertain obstacles is a
significantly more restricted problem class than POMDPs,
giving us hope that we might find an algorithm that is efficient
in practice and gives strong theoretical guarantees such as
completeness and safety.

Axelrod, Kaelbling and Lozano-Pérez (2017, 2018)
proposed solving an approximation of the navigation under
uncertainty problem. Instead of trying to compute a path
that minimizes the true probability of collision under any
distribution of obstacles, they propose solving a restricted
problem where the obstacles are limited to a structured
class of PGDF distributions and the collision probability is

approximated using a shadow (the geometric equivalent of
a confidence interval). While shadow bounds are inherently
loose (they overestimate the probability of collision when
the obstacle is likely to be far away from the estimated
location) they greatly decrease the computational complexity
of bounding the probability of collision, since only space
visited by the robot close to the obstacle affects the probability
bound.

Axelrod, Kaelbling and Lozano-Pérez (2018) proposed the
following question: Is there an efficient algorithm that, given
a graph embedded in Rn and a set of obstacles, can find the
path with minimal risk as computed via a shadow bound? The
cost function derived from the shadow approximation is only
influenced by the portion of the trajectory close to the obstacle
and has submodular structure with respect to the graph. The
fact that similar approximations have worked well for motion
planning, and the existence of efficient algorithms for certain
classes of submodular minimization problems gave the hope
that it might be possible to find an efficient algorithm for this
problem as well.

While motion planning is hard in general, practical and
efficient algorithms have proven very successful under some
assumptions (LaValle 2006). One such body of work are the
sampling-based motion-planning methods. These algorithms
often have the assumption that the problem can be split into
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two pieces: First use a practically (though often not worst-
case) efficient method to generate a small graph that contains a
solution; then use a standard, efficient graph search algorithm
to find the solution in this graph. Algorithms based on this
scheme have been successful even for high-dimensional
planning problems for robots with many degrees of freedom.

There are several other classes of practically efficient
algorithms (including grid based and optimization-based
planners) that rely on the assumption that part of the problem
may be solved much more efficiently in the average case than
in the worst case. We discuss this further in the background
section.

This paper answers the question posed by Axelrod,
Kaelbling and Lozano-Pérez (2018) in the negative when
an exact solution of FPTAS is required.

Theorem 1. Safe path planning in the presence of
uncertain obstacles in 2 dimensions is NP-hard.

A more formal statement of this result is presented in Section
3. We prove this by reducing from MAXQHORNSAT using
a construction based on and very similar to that used by
Erickson and LaValle (2013) for the minimum constraint
removal problem (MCR). We also show, via reduction from
3-SAT, that both safe path planning and MCR remain hard in
three dimensions even when each obstacle overlaps with only
a constant number of other obstacles, answering the question
posed by Hauser (2014). Our first contribution is modifying
the reduction to 2D MCR by Erickson and LaValle (2013)
to instead reduce to the 2D safe path planning problem. Our
second contribution is presenting a new reduction from 3-SAT
to a restricted version of safe path planning and MCR in 3D.

While the proofs in this paper use PGDF obstacles, we do
not use any property that is unique to PGDF obstacles. The
results essentially depend on only several properties of the
model. This includes tail behavior (probability of collision
being small far away from the obstacle), monotonicity (larger
shadows have a larger probabilities), and the correlations
between the events that nearby locations are in collision. Since
these properties are rather natural, we believe the same results
would apply to many other reasonable classes of realistic
models of estimated obstacles.

The proofs presented in this paper illuminate what makes
this problem more difficult than the standard motion-planning
problem with known obstacles. Searching for the minimum-
risk path does not have a Markov-like structure. Unlike in the
shortest-path problem on a graph, the risk of the second half of
a trajectory is very much affected by the first half. This means
that the problem is lacking the Bellman property, as identified
by Salzman, Hou and Srinivasa (2017). The absence of a
Markov-like property for the risk over the path has important
ramifications for the complexity of the problem. In particular,
the collision risk at different points along a trajectory can be
highly correlated.

2 Background
Motion planning for robotics has been extensively studied in
many different settings. One important high-level distinction
between settings is whether the environment and state are
known exactly or estimated.

2.1 Complexity in Motion Planning
The story of motion-planning algorithms in robotics has been
one of walking the fine boundaries of complexity classes. On
one hand, motion planning is PSPACE-hard in R3 (Reif 1979)
and R2 (E. Hopcroft, Joseph and Whitesides 1984; Hopcroft,
Joseph and Whitesides 1982) with respect to the number of
degrees of freedom of a robot (and thus dimension of its
configuration space). However, while Canny’s (1988) work
on singly-exponential time (with respect to number of degrees
of freedom) roadmaps leads to a polynomial-time algorithm
when the number of degrees of freedom is fixed, a different
set of algorithms is used in practice. The robotics community
has been able to find practically efficient methods that provide
meaningful theoretical guarantees weaker than completeness
(finding a solution if one exists). Sampling-based planners
such as Rapidly-Exploring Random Trees (RRTs) (LaValle
and Kuffner 1999; LaValle 2006) and Probabilistic Roadmaps
(PRMs) (Kavraki, Svestka, Latombe and Overmars 1996) are
both practically efficient and probabilistically complete under
some regularity conditions (Kleinbort, Solovey, Littlefield,
Bekris and Halperin 2018). Given effective heuristics, graph-
based planners have also proved efficient and provide
resolution completeness (LaValle 2006).

Searching for optimal plans, as opposed to simply feasible
plans, further increases the difficulty. In a classic result, Canny
and Reif (1987) show that the 3-d Shortest-Path Problem
is NP-hard for a simple robot in terms of the number of
obstacles. This ruled out results of the form of Canny’s (1991)
roadmap algorithm that showed fixed parameter tractability
in the feasible motion planning case.

However, the community has been able to find practically
efficient algorithms regardless of these worst-case results. A
modified version of the original sampling-based algorithms
allows them to return nearly optimal solutions in the limit
(Karaman and Frazzoli 2011) and graph-based planning
algorithms are able to provide bounds on the suboptimality of
their solutions (Aine, Swaminathan, Narayanan, Hwang and
Likhachev 2016).

Another motion-planning problem that lacks a Markov
property is the minimum constraint removal problem (MCR),
where the objective is to find a path that collides with the
fewest obstacles. This problem was shown to be NP-hard
in Cartesian spaces of dimension 3 (Hauser 2012, 2014),
and shortly later, in dimension 2 (Erickson and LaValle
2013). Eiben, Gemmell, Kanj and Youngdahl (2018) improve
on these results by showing that MCR remains hard when
obstacles are restricted to line segments or axis-aligned
rectangles. Hauser (2014) observes that MCR is in P when
obstacles are connected and non-overlapping, and he suggests
that the hardness seen in MCR is caused when an obstacle
intersects with O(n) other obstacles. Erickson and LaValle
(2013), Hauser (2014), and Eiben, Gemmell, Kanj and
Youngdahl (2018) further pose the open question of whether
MCR remains hard when each obstacle overlaps with only a
constant number of other obstacles. We then ask an analogous
question: Is safe path planning in the presence of uncertain
obstacles tractable when obstacles intersect only a constant
number of other obstacles? One form of this question in
3D is answered in the negative in a recent WAFR paper
(Shimanuki and Axelrod 2018). These questions are stated
more formally and answered in the negative in Section 3. This
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Figure 1. The orange set is a shadow of the obstacle. The blue
set is the obstacle represented by the mean parameters.

paper is completely standalone and repeats all the necessary
definitions. The results in two dimensions and the results with
bounded obstacle overlap are new to this paper.

2.2 Planning under Uncertainty
While planning under uncertainty has been broadly studied
in robotics, few methods have formal guarantees on solution
quality and efficient runtime. We survey some of the related
work below.

Many works assume some sort of uncertainty about the
environment, but do not propose a model in which to
rigorously quantify the uncertainty in the environment and
provide guarantees about the success probability of the
trajectory. Instead they often rely on heuristics that seem
to provide the desired behavior.

One line of work focuses on uncertainty in the robot’s
position. Here the model of the robot itself is “inflated” before
the collision checking, ensuring that any slight inaccuracy in
the position estimate or tracking of the trajectory does not
result in a collision.

Work that focuses on uncertainty in the environment
sometimes does the exact opposite. They often inflate the
occupied volume of the obstacle with a “shadow” and ensure
that any planned trajectory avoids the shadow (Kaelbling and
Lozano-Pérez 2013; Lee, Duan, Patil, Schulman, McCarthy,
van den Berg, Goldberg and Abbeel 2013).

A more general approach that handles either or both of
localization and obstacle uncertainty is belief-space planning.
Belief space is the set of all possible beliefs about or
probability distributions over the current state. Belief-space
planning converts the uncertain domain in state space to belief
space, then plans in belief space using trees (Prentice and Roy
2007; Bry and Roy 2011) or control systems (Platt, Tedrake,
Kaelbling and Lozano-Perez 2010).

Another line of work uses synthesis techniques to construct
a trajectory intended to be safe by construction. If the system
is modeled as a Markov decision process with discrete states,
a safe plan can be found using techniques from formal
verification (Ding, Pinto and Surana 2013; Feyzabadi and
Carpin 2016). Other authors have used techniques from

Signal Temporal Logic combined with an explicitly modeled
uncertainty to generate plans that are heuristically safe
(Sadigh and Kapoor 2016).

Recent work by Hauser (2014, 2012) applies an
approximate minimum constraint removal algorithm to
motion planning under obstacle uncertainty by randomly
sampling many draws for each obstacle and finding the path
that intersects with the fewest samples. With this approach,
he demonstrates low runtime and error on average although
with poor worst case performance.

In previous work, Axelrod, Kaelbling and Lozano-Pérez
(2017, 2018) formalized the notion of a shadow in a way that
allowed the construction of an efficient algorithm to bound
the probability that a trajectory will collide with the estimated
obstacles.

We can now define a shadow rigorously:

Definition 1. ε-shadow. A set S ⊆ Rd is an ε-shadow of a
random obstacle O ⊆ Rd if Pr[O ⊆ S] ≥ 1− ε.

Shadows are important because they allow for an efficient
method to upper-bound the probability of collision. If there
exists an ε−shadow of an obstacle that does not intersect
a given trajectory’s swept volume, then the probability of
the obstacle intersecting with the trajectory is at most ε. An
example of a shadow for an obstacle is shown in figure 1.

3 Preliminaries

3.1 Notation
In this section we will cover definitions and notation
conventions that will be used in this paper. A vector will
be marked in bold as in u, in contrast to a scalar u. ∧, ∨, and
¬ are the logical AND, OR, and NOT operators, respectively.
The power set (set of all subsets) of S is denoted by P(S). A
function mapping into the power set of Rn outputs subsets of
Rn. We will use ei to denote the ith standard basis vector.

3.2 Random Obstacle Model
In order to attempt to provide formal non-collision guarantees
one must first model the uncertainty in the environment. At
a high level we assume that each episode of the robot’s
interaction happens in the following sequence:

1. A distribution of obstacles is fixed and known to the
robot. Usually this is the conditional distribution for
the obstacles given the sensor observations.

2. A set of obstacles is now drawn from this distribution.
These obstacles now remain static for the duration of
the episode.

3. The robot computes, commits to and executes a
trajectory.

4. The probability of collision in question is exactly the
probability that this trajectory collides with at least one
of the obstacles.

It is important that the obstacle distribution captures the
fact that collision probabilities in different locations can be
correlated. Consider the following toy example where a range
sensor reports that an obstacle is 10 meters in front of the
robot. At time t = 1 the robot drives forward 10 meters and
then at t = 2 drives backwards 2 meters. If the robot did not
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crash at time t = 1, it is unlikely to collide at time t = 2!
Using a more realistic model that captures correlations allows
systems to be both safer and less conservative.

In this work we restrict ourselves to polytopes with
Gaussian-distributed faces (PGDFs)—a model that is able
to capture such correlations (Axelrod, Kaelbling and Lozano-
Pérez 2017). Under the PGDF assumption, obstacles are
the intersections of halfspaces with parameters drawn from
multivariate normal distributions. More formally a PGDF

O ⊂ Rn is O =
i⋂
αi
Tx ≤ 0, where αi ∼ N (µi,Σi). We

can use homogeneous coordinates to create obstacles not
centered about the origin.

One reason that PGDF obstacles are important is that we
have methods of computing shadows for PGDF obstacles
efficiently (Axelrod, Kaelbling and Lozano-Pérez 2017).

We note that this formulation differs from the notion
of “risk-zones” evaluated by Salzman and Srinivasa (2016)
and Salzman, Hou and Srinivasa (2017), where the cost
of a trajectory is proportional to the amount of time spent
within a risk-zone. These problems share the lack of an
optimal substructure—the subpaths of an optimal path are
not necessarily optimal. Salzman, Hou and Srinivasa (2017)
provide a generalization of Dijkstra’s algorithm that finds
minimum-risk plans in their domain efficiently, but as we will
show, there are no such techniques for our problem.

3.3 Algorithmic Question
Now that we have defined shadows and PGDF obstacles, we
can define what it means for a path to be safe. Suppose the
robot and obstacles exist in Rd (d is usually 2 or 3). This is
commonly referred to as the task space. Furthermore, suppose
the configuration space of the robot is parametrized in Rk
(usually corresponding to the k degrees of freedom of the
robot).

Since planning usually happens in the robot’s configuration
space, but the obstacles are in task space, we need to be able
to convert between the two.

Definition 2. Embedding Map. A function f : Rk → P(Rd)
is an embedding map if it maps robot configurations into
the subset of Rd that is occupied by the robot at that
configuration.

The embedding map can usually be constructed by
combining the forward kinematics and robot model.

Definition 3. A configuration space trajectory τ : [0, 1]→
Rk is a map from a “time” index into the trajectory to the
robot configuration at that point in the trajectory.

Definition 4. A task-space trajectory τ ′ : [0, 1]→ P(Rd) is
defined as the map between an index into the trajectory and
the space occupied by the robot at that point in the trajectory.

Alternatively, if given a configuration space trajectory τ ,
τ ′(t) = f(τ(t)) where f is the embedding map.

For the rest of the paper we will only concern ourselves
with task-space trajectories, noting that it is easy to go from a
configuration space trajectory to a task-space trajectory using
the embedding map.

Definition 5. The swept volume X of a task-space trajectory
τ is the set of task-space points touched by the robot while
executing trajectory τ .

Said differently, X =
⋃

t∈[0,1]
τ(t).

This allows us to formally define what it means for a
trajectory to be safe.

Definition 6. ε-safe trajectory. Given a joint distributions
over random obstacles, a task-space trajectory is ε-safe if
the corresponding swept volume has at most ε probability of
intersecting at least one obstacle.

This leads to the following algorithmic question, of finding
safe plans for a known distribution of PGDF obstacles.

Problem 1. ε-safe Planning Problem. Given the
parameters of PGDF distributions for each obstacle
and initial and end points s, t in configuration space,
find an ε-safe trajectory from s to t.

Note that there exists reductions between the safe planning
problem and finding a path that minimizes the risk of collision.
Since the probability ε is confined to [0, 1], a binary search
over ε yields an efficient algorithm that can approximately
compute the minimum risk given an ε−safe planner. For
convenience, our proofs will consider the approximate
minimum-risk planning problem, though the construction
applies directly to ε−safe planning as well.

Problem 2. (1 + α)-approximate minimum-risk plan-
ning problem. Given the parameters of PGDF dis-
tributions for each obstacle and initial and end points
s, t in configuration space, return a ((1 + α)ε∗)-safe
trajectory from s to t, where ε∗ is the minimum ε for
which an ε-safe trajectory exists.

3.4 Graph Restriction
We start by considering the class of motion-planning
algorithms that first construct a graph embedded in the robot’s
configuration space, and then run a graph-search algorithm
to find a path within the graph. This class of algorithms has
been shown to be practical in the known environment by
sampling-based planners such as PRM and RRG. Conditioned
on there being a nonzero probability of sampling a solution,
these algorithm are guaranteed to find a collision-free path
with probability approaching 1 as the number of iterations
approaches infinity (LaValle and Kuffner 1999; Karaman and
Frazzoli 2011).

More formally, this condition can be articulated as the
existence of a path in the δ-interior of the free space Xfree.

Definition 7. δ-interior (Karaman and Frazzoli 2011). A
state x ∈ Xfree is in the δ-interior of Xfree if the closed ball
of radius δ around x lies entirely in Xfree. The a set is in the
δ-interior of Xfree if every point in the set is in the δ-interior
of Xfree

This condition is necessary because it guarantees that
finding a plan does not require waiting for a zero probability
event. However this formulation does not extend well to the
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domain with uncertain obstacles; there is no concept of “free
space” because the locations of the obstacles are not known.
Instead we will use the equivalent view of inflating the path
instead of shrinking the free space.

Definition 8. For δ > 0, the δ-inflation of the set X is the set
Y =

⋂
x∈X
{y | d(x,y) ≤ δ}.

For the proofs in this paper, the particular choice of metric
d does not matter.We note that in the deterministic setting, if
a trajectory is in the δ-interior of Xfree, then the δ-inflation
of the trajectory is entirely in Xfree. This allows us to
consider problems with the following regularity condition:
there exists a δ-inflated task-space trajectory that has a low
risk of collision.

Definition 9. ε-safe δ-inflated task-space trajectory. A task-
space trajectory is an ε-safe δ-inflated trajectory if its δ-
inflation intersects an obstacle with probability at most ε.

We want to find an algorithm that satisfies the completeness
and safety guarantees defined below.

Definition 10. Probabilistically Complete
(1 + α)-approximate Safe Planning Algorithm. A planning
algorithm takes a set of PGDF obstacles O, a start state s,
and a goal state t as input and generates a path as output.
A planning algorithm is probabilistically complete and
(1 + α)-approximate safe if, with n samples, the probability
that it finds a ((1 + α)ε∗)-safe trajectory approaches 1 as
n approaches ∞, where ε∗ is the minimum ε for which an
ε-safe trajectory exists.

We also consider a special case where each obstacle
overlaps with only a constant number of other obstacles.

Definition 11. Two obstacles Oi, Oj overlap if there exists
any point in space that both obstacles have a significant
probability of intersecting. That is, there exists x ∈ Rd such
that Pr[x ∈ Oi] ≥ ε and Pr[x ∈ Oj ] ≥ ε for ε = ε∗

|O| .

Definition 12. Probabilistically Complete κ-overlap
(1 + α)-approximate Safe Planning Algorithm. A
probabilistically complete κ-overlap (1 + α)-approximate
safe planning algorithm is a planning algorithm that is
probabilistically complete and (1 + α)-approximate safe for
cases where the number of other obstacles that each obstacle
overlaps with is at most κ.

Axelrod, Kaelbling and Lozano-Pérez (2017) provide an
extension of the RRT algorithm to the probabilistic domain
using the shadow approximation. The uniqueness of paths
between any two vertices in a tree makes finding the optimal
(restricted to the tree) path trivial. However, while the paths it
generates are indeed safe, the algorithm is not probabilistically
complete.

However, the following extension of the RRG algorithm is
probabilistically complete (Axelrod 2017).

Algorithm 1 SAFE RRG

Input: End points s, t ∈ Rd, set of PGDF obstacles O, and
number of samples n.

Output: A ((1 + α)ε∗)-safe trajectory from s to t, where ε∗
is the minimum ε for which an ε-safe trajectory exists.

1: G = CONSTRUCT RRG(s, t, n)
2: return GRAPH SEARCH(G,O, s, t)

We note that as n increases, the probability that there is
a sample near any given point x in the space approaches
1. Here, GRAPH SEARCH is a (1 + α)-approximate safe
graph-search algorithm as defined below.

Definition 13. A (1 + α)-approximate safe graph-search
algorithm is a procedure φ(G,O, s, t), where G is a graph,
O is a set of PGDF obstacles, and s and t are the start and
end nodes in G, respectively. It returns a ((1 + α)ε∗)-safe
trajectory in G, where ε∗ is the minimum ε for which an
ε-safe trajectory exists.

Theorem (Axelrod 2017). SAFE RRG is probabilistically
complete and (1 + α)-approximate safe as long as
GRAPH SEARCH is complete and (1 + α)-approximate safe.

However, no graph-search procedure, beyond the naı̈ve,
exponential-time search procedure, is provided (Axelrod
2017). This means that, while the probability of success
increases with more samples, the worst-case running time
is exponential. Sampling-based motion-planning algorithms
work in practice in the known environment because efficient
graph-search algorithms can quickly find collision-free paths
within a graph. In order for the SAFE RRG class of
algorithms to be practical, we would need a corresponding
graph-search algorithm in the probabilistic domain. Because
the cost of a path depends on what set of shadows it intersects,
the state space of the graph search is not just the current node
but also includes the accumulated risk incurred due to each
obstacle. This means that the typical approaches for searching
graphs with known obstacles, which make use of dynamic
programming, cannot be applied in the same manner to graphs
with unknown obstacles.

4 Results
Unfortunately, as will be shown in the remainder of this paper,
Problem 1 and Problem 2 are NP-HARD with respect to
n = Θ(|G|+ |O|), the size of the input, even with a point
robot in two dimensions and given a graph containing the
solution. We note that while our results preclude an FPTAS,
it does not preclude all approximation algorithms.

Theorem 2. Unless P = NP , there is no (1 + α)-
approximate ε-safe graph-search algorithm that runs in
POLY (n), time when restricted to graphs that embed
in Rd, d = O(k) where k is the number of obstacles and
α = Θ( 1

n ).

We can strengthen this result to show that the minimum-risk
planning problem is hard in general, that is, even when not
restricted to a graph.

Theorem 3. The (1 + α)-approximate minimum-risk
planning problem is NP-hard. That is, unless P =
NP , there is no (1 + α)-approximate Safe Planning
Algorithm for R2 that runs in POLY (n) when α =
Θ
(

1
n2

)
, even when provided a graph containing the

solution.

We show Theorem 2 and Theorem 3 by constructing a
minimum risk planning problem in 2 dimensions which solves
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MAXQHORNSAT (an NP-complete problem). The proof
follows the outline of the MCR hardness proof presented
by Erickson and LaValle (2013). The main contribution of
the work in this theorem is the connection to the minimum
risk planning problem and the construction of the uncertain
obstacles. However, the construction is not natural in the
sense that certain constructed obstacles are used to correlate
collision probabilities in disparate parts of the space. Some
obstacles will be split by others and there is a high degree
of overlap. We also show that the problem remains hard in
3D even when each obstacle overlaps with only a constant
number of other obstacles.

Theorem 4. The κ-overlap (1 + α)-approximate
minimum-risk planning problem is NP-hard for κ =
O(1) in 3 dimensions. That is, unless P = NP , there
is no κ-overlap (1 + α)-approximate Safe Planning
Algorithm for R3 that runs in POLY (n) when α =
Θ( 1

n2 ), even when provided a graph containing the
solution and when restricted to cases where each
obstacle overlaps with at most κ other obstacles.

Furthermore, the proof can be extended to apply to MCR as
well.

Theorem 5. The κ-overlap minimum constraint removal
problem is NP-hard for κ = O(1) in 3 dimensions.

We show Theorems 4 and 5 by constructing a minimum risk
planning problem and related MCR problem in 3 dimensions
which solves 3-SAT. We believe the construction presented
here is of particular value because it is very natural – the
construction is simple and does not require that any obstacle
be immediately adjacent to more than a constant number of
other obstacles.

5 Hardness Results in R2

5.1 Maximum Quadratic Horn Clause
Satisfiability

Maximum Quadratic Horn Clause Satisfiability
(MAXQHORNSAT) is an NP-complete problem whose
input is a Boolean formula given in conjunctive normal
form. It consists of the intersection of many clauses, each
consisting of at most two literals (i.e. is quadratic), and
each clause contains at most one positive literal (i.e. is a
Horn clause) (Jaumard and Simeone 1987). In other words,
it is of the form ((x0 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) ∧ (x2) ∧ ...).
While QHORNSAT, the decision problem of determining
the satisfiability of the input formula, is in P (F. Dowling
and Gallier 1984), MAXQHORNSAT, the problem of
determining the maximum number of clauses that can
be satisfied, is NP-hard (Jaumard and Simeone 1987).
MAXQHORNSAT was used by Erickson and LaValle (2013)
to show that minimum constraint removal (MCR), a similar
problem, is NP-hard. Our reduction is based on that used
by Erickson and LaValle and will use a similar construction
modified to apply to the safe planning problem. We will
consider a formula with nv variables, nn clauses with two
negative literals, np clauses with one positive literal and one

Figure 2. The spatial relationship between the different gadgets.

negative literal, and ns clauses with only a single literal. We
also define the total number of clauses nc = ns + np + nn
and the total size of the problem n = nv + nc.

5.2 Proof Outline
We prove Theorem 2 using a reduction from MAXQHORN-
SAT. Given a MAXQHORNSAT instance, we construct an
R2 (1 + α)-approximate minimum-risk planning problem
and graph containing the solution. Our construction will have
two kinds of obstacles. High-risk obstacles will induce a
sufficiently high risk that any “reasonable” solution will go
through the minimal number of these obstacles. Low-risk
obstacles will affect the collision probability much less and
will be used to count how many clauses are satisfied. The sum
of the potential risk of all low-risk obstacles will be less than
that of a single high-risk obstacle. This means the optimal
solution will always choose to avoid a high-risk obstacle
whenever possible, regardless of how many low-risk obstacles
it must pass in order to do so. This creates a measurable
gap between the optimal solution and the next best one. The
construction can be split into three pieces. Figure 2 describes
the spatial relationship between the pieces described in the
following caption.

1. Construct a portion of the graph for the algorithm
to assign every variable by taking either the left or
right branch, corresponding to setting the value of
each variable to true or false, respectively. A high-risk
obstacle corresponding to each branch will ensure that
the optimal path only goes down one of the branches.

2. Construct a portion of the graph for the algorithm to
select a literal from each clause to try to satisfy by
taking either the left or right branch, corresponding
to selecting the first or second literal, respectively.
Choosing a branch which corresponds to a different
assignment than in the first part would result in passing
by an extra high-risk obstacle.

3. Construct low-risk obstacles such that there will be
additional collision risk each time the selected literal is
not satisfied by the chosen variable assignment.

The solution to this planning problem can then be
transformed into a solution to the original MAXQHORNSAT
instance in polynomial time (via observing which nodes were
visited), demonstrating that (1 + α)-approximate safe graph
search is at least as hard as MAXQHORNSAT.
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5.3 Obstacle Templates
Throughout this reduction we will construct a number of
obstacles using a few common templates, so for simplicity of
notation we will define a few parameterized types of obstacles.
These obstacle templates will fall into two categories based
on how much we want them to affect the cost of a trajectory:
low-risk obstacles and high-risk obstacles. In figures, high-
risk obstacles will be denoted in blue and low-risk obstacles
will be denoted in green.

The first kind of obstacle, shown in Figure 3, is a low-risk
obstacle parameterized by a line segment (u,v). It is a long,
thin obstacle that runs parallel to (u,v) and has one edge
with uncertain position such that there is a risk of collision
with points along (u,v).

Ĉ(u,v, α) =


x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ R2

1

|v − u| (v − u)T (x− u) ≥ −εC

1

|u− v| (u− v)T (x− v) ≥ −εC

α ≤ 1

|v − u| (R
π
2
(v − u))T (x− u) ≤ εC


for small constant εC , and whereRθ is the 2D rotation matrix
for a clockwise rotation with angle θ. Note that Ĉ defines
a rectangular obstacle, where the position of one edge is
parameterized by α. Then we can define a distribution over
such obstacles

C(u,v) = Ĉ(u,v, α) where α ∼ N (µC , σ
2
C)

for small constants µC and σC . It guarantees that any
point within distance εC of (u,v) has a risk of collision
of at most rc = Φ

(
− 1
σC

(µC − εC)
)

and at least r′c =

Φ
(
− 1
σC

(µC + εC)
)

, and any point with distance further
than zCεC from (u,v) for some constant zC > 1 has a
risk of collision of at most rf = Φ

(
− 1
σC

(µC + 1√
2
zCεC)

)
(lower bounded by r′f = 0 because risk becomes arbitrarily
small as distance from the obstacle increases), where Φ is
the cumulative distribution function of the standard normal
distribution. Note that given some value of εC we can set
µC , σC , and zC to achieve any desired values of rc, r′c, and
rf . In particular, we can make r′c/rc arbitrarily close to 1
by decreasing εB , and make rf/rc arbitrarily close to 0 by
increasing zB .

The next kind of obstacle is identical to the line-segment
obstacle defined above and shown in Figure 3 except it is a
high-risk obstacle, so it has a higher probability of intersecting
with points near the line segment (so it can be thought of as
having a higher weight in terms of affecting the risk of a
path).

V̂ (u,v) =


x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ R2

1

|v − u| (v − u)T (x− u) ≥ −εV

1

|u− v| (u− v)T (x− v) ≥ −εV

α ≤ 1

|v − u| (R
π
2
(v − u))T (x− u) ≤ εV

α ∼ N (µV , σ
2
V )


for small constant εV . Note that V̂ defines a rectangular

obstacle, where the position of one edge is parameterized by

u v

(a)

u v
(b)

Figure 3. The illustrations of the obstacle template C(u, v).
Note that it is a PGDF obstacle with the height of the obstacle
being the only part that is random. Figure 3a illustrates a
probability density function of collision. The distance between u
and the top line or between v and the top line is εC . Figure 3b
illustrates several obstacles drawn from the obstacle template.
Note that if u is in collision so is v and vice versa.

α. Then we can define a distribution over such obstacles

V (u,v) = V̂ (u,v, α) where α ∼ N (µV , σ
2
V )

for small constants µV and σV . As before, it guarantees that
any point within distance εV of (u,v) has a risk of collision
of at most rV c = Φ(− 1

σV
(µV − εV )) and at least r′V c =

Φ(− 1
σV

(µV + εV )), and any point with distance further than
zV εV from (u,v) for some constant zV > 1 has a risk of
collision of at most rV f = Φ(− 1

σV
(µV + 1√

2
zV εV )) (lower

bounded by r′V f = 0). Again, given some value of εV we can
set µV , σV , and zV to achieve any desired values of rV c, r′V c,
and rV f , and so let us set the constants such that

rV c = 5ncrc

r′V c = 5ncr
′
c

rV f = 5ncrf .

The final type of obstacle, shown in Figure 4, is another
low-risk obstacle parameterized by a single point q and a
horizontal direction h (either 1 or −1, corresponding to right
and left, respectively). It is a small obstacle that sits to the
side of q in the direction specified by h and has one edge with
uncertain position such that there is risk of collision with q
and points nearby q.

B̂(q, h, α) =

x
∣∣∣∣∣∣∣∣

x ∈ R2

e2
Tq− εB ≤ e2

Tx ≤ e2
Tq+ εB

(e1
Tq+ α)h ≤ e1

Txh ≤ (e1
Tq+ εB)h


for small constant εB (also recall that ei refers to the ith

standard basis vector). Note that B̂ defines a rectangular
obstacle, where the position of one edge is parameterized
by α. Then we can define a distribution over such obstacles

B(q, h) = B̂(q, h, α) where α ∼ N (µB , σ
2
B)

for small constants µB and σB . It guarantees that any
point within a ball of radius εB around q has a risk of
collision of at most rc = Φ

(
− 1
σB

(µB − εB)
)

and at least

r′c = Φ
(
− 1
σB

(µB + εB)
)

, and any point outside a ball of
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q h

Figure 4. An example of the B(q, h, α) obstacle template. The
distance between q and the left edge of the obstacle is εB

radius zBεB around q for some constant zB > 1 has a risk
of collision of at most rf = Φ

(
− 1
σB

(µB + 1√
2
zBεB)

)
. As

before, note that given some value of εB we can set µB , σB ,
and zB to achieve any desired values of rc, r′c, and rf . Since
these will also be low-risk obstacles, let us say that they will
take on the same risk values as with the obstacles defined by
C above.

5.4 Variable Gadgets
First, for each variable i in the MAXQHORNSAT problem,
we construct a section of the graph where the choice of path
corresponds to choosing either a true or false value of variable
i. We illustrate this in Figure 5 and formalize this below. For
variable i we construct vertices

uv
i = (0, 3i)

av
i = (−(nv − i)− 1, 3i+ 1)

bv
i = (nv − i+ 1, 3i+ 1)

vv
i = (0, 3i+ 2)

and edges
(uv

i ,a
v
i )

(uv
i ,b

v
i )

(av
i ,v

v
i )

(bv
i ,v

v
i ).

Each pair of consecutive loops is connected by an additional
edge (vv

i ,u
v
i+1) for all i..

This entire set of variable gadgets will be mirrored at the
bottom, with the positive-negative clause gadgets (see Section
5.5.2 between them. The bottom set of variable gadgets will be
needed for the negative-negative clause gadgets (see Section
5.5.3). Then for each variable i we construct a mirrored loop
with vertices

uv′
i = (0, 7nv + 3np − 3i)

av′
i = (−(nv − i)− 1, 7nv + 3np − 3i+ 1)

bv′
i = (nv − i+ 1, 7nv + 3np − 3i+ 1)

vv′
i = (0, 7nv + 3np − 3i+ 2)

and edges
(uv′

i ,a
v′
i )

(uv′
i ,b

v′
i )

(av′
i ,v

v′
i )

(bv′
i ,v

v′
i ) .

Likewise, consecutive loops are connected by an additional
edge (vv′

i ,u
v′
i+1) for all i.

In order to ensure that the resulting path selects the same
variable assignment in the top set and the mirrored set, for
each variable i, we construct an obstacle that has risk of
colliding with the true path in both versions, and another
obstacle that has a risk of colliding with the false path in both
versions. These obstacles are given by

V (av
i ,a

v′
i )

V (bv′
i ,b

v
i ).

Because the collision risks are correlated, selecting the same
value in the bottom gadget as in the top gadget will incur no
additional risk of colliding with the corresponding obstacle,
but selecting a different value will incur the additional risk of
colliding with the other obstacle.

5.5 Clause Gadgets
There are three types of clause gadgets, each of which will
need to be handled separately: single literals, each with only
a single positive or negative literal, positive-negative clauses,
each with one positive literal and one negative literal, and
negative-negative clauses, each with two negative literals.

5.5.1 Single Literal This first case is the simplest, as there
is no choice to make about which literal to satisfy, so we do
not need to add any additional components to the graph. For
each single-literal clause j, let csj denote the variable specified
by the literal. Then we construct obstacles such that setting
variable csj to the opposite value in the variable assignment
gadgets will incur additional risk. For a positive literal, the
obstacles are constructed as

C(av
cs
j
,uv

cs
j+1)

B(bv
cs
j
, 1)

and for a negative literal, the obstacles are constructed as

C(uv
cs
j+1,b

v
cs
j
)

B(av
cs
j
,−1).

Notice that each path through the variable gadget loop will
incur risk of colliding with one of these obstacles, but at
the end of the loop it will pass near the same obstacle that
is near the branch corresponding to a satisfying assignment.
Therefore selecting a variable assignment that satisfies this
clause will risk collision with only one of these obstacles,
whereas selecting a variable assignment that does not satisfy
this clause will risk collision with both obstacles.

5.5.2 Positive and Negative Literal For each clause j with
one positive literal and one negative literal, we construct a
loop below the top set of variable gadgets, with vertices

up
j = (0, 4nv + 3j)

ap
j = (−1, 4nv + 3j + 1)

bp
j = (1, 4nv + 3j + 1)

vp
j = (0, 4nv + 3j + 2)

and edges
(un

i ,a
n
i )

(un
i ,b

n
i )

(an
i ,v

n
i )

(bn
i ,v

n
i ).
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Figure 5. The variable gadget loops (solid lines) and obstacles (gradient-shaded rectangles). A path assigns a true or false value to
each variable by selecting a branch through the variable gadget loop to traverse. It must also select the same variable assignment in
the mirrored gadgets at the bottom in order to avoid additional collision risk. Notice that only high-risk obstacles are used in these
gadgets, as they are constructed with the V template. There are two mirrored copies of each loop, with the positive-negative clause
(or +/− clause) gadgets in the center. The positive-negative clause gadgets will be constructed in Section 5.5.2. Also notice how
loops closer to the center have smaller width, so a straight line can be drawn from any loop to the center without intersecting any other
loops.

Figure 6. An example of a trajectory corresponding to
X1 = T,X2 = T . Note that the top and bottom clauses match,
otherwise excessive risk would be incurred.

As before, we also construct edges connecting consecutive
loops (vn

i ,u
n
i+1) for all j, an edge from the end of the last

variable gadget in the top set to the first positive-negative

clause loop (vv
nv
,un

0), and an edge from the last positive-
negative clause loop to the first variable gadget in the mirrored
set (vn

nn
,uv′

nv
).

Each loop gives a planning algorithm two paths
corresponding to two literals to try to satisfy. Arbitrarily,
for each such positive-negative clause j, let the left path
correspond to the positive literal cpjp and the right path
correspond to the negative literal cpjn. For each one, we
construct two obstacles, each near one of the two paths of
the corresponding variable gadget loop. However, for the
obstacle near the path corresponding to assigning a value to
the variable that satisfies the literal, we extend it to also be
near the path for this literal in this clause gadget loop.

C
(
ap
j ,a

v
cp
jp

)
C
(
bv
cp
jn
,bp

j

)

B
(
bv
cp
jp
, 1
)

B
(
av
cp
jn
,−1

)
Therefore, taking a path corresponding to a satisfied literal
risks collision with just that one obstacle, whereas a path
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Figure 7. An example positive-negative clause gadget, for
X1 ∨ ¬X2, illustrating the variable gadget loops (obstacles not
shown) and positive-negative clause gadget loops and obstacles.
A path assigns a true or false value to each variable by selecting
a branch through the variable gadget loop, thereby risking
collision with an obstacle. Then, there is no additional risk for
taking the branch through the positive-negative clause gadget
loop that corresponds to a satisfied literal. Notice that only
low-risk obstacles are used in this gadget. For clarity, we have
drawn the B-template obstacles along the edge of the branch
rather than at the corner of the branch, as it is constructed in the
template.

corresponding to a non-satisfied literal risks collision with
both obstacles.

5.5.3 Two Negative Literals For each clause j with two
negative literals, we construct a loop to the side of the other
gadgets, with vertices

un
j = (2nv + 3ns − 3j, 4nv)

an
j = (2nv + 3ns − 3j − 1, 4nv + 1)

bn
j = (2nv + 3ns − 3j − 1, 4nv − 1)

vn
j = (2nv + 3ns − 3j − 2, 4nv)

and edges
(up

i ,a
p
i )

(up
i ,b

p
i )

(ap
i ,v

p
i )

(bp
i ,v

p
i ).

We construct edges connecting consecutive loops (vp
i ,u

p
i+1)

for all j. We also construct an intermediate vertex d = (2nv +
3ns, 7nv + 3np + 2) to connect the last variable gadget in the

mirrored set to the first negative-negative clause loop with
two edges (vv

0 ,d) and (d,up
0).

Each loop gives a planning algorithm two paths
corresponding to two literals to try to satisfy. For each
such negative-negative clause j, let cnj1 denote the variable
specified by the first literal and cnj2 denote the variable
specified by the second literal. For each literal, we
construct two obstacles, each near one of the two paths
of the corresponding variable gadget loop (for the literal
corresponding to the top path of the negative-negative clause
loop, we will use the top set of variable gadgets, and
for the literal corresponding to the bottom path of the
negative-negative clause loop, we will use the mirrored set of
variable gadgets). However, for the obstacle near the path
corresponding to a negative assignment assigning (which
satisfies the literal), we extend it to also be near the path
for this literal in this clause gadget loop.

C(bv
cn
j1
,an

j )

C(bn
j ,a

v′
cn
j2

)

B(av
cn
j1
,−1)

B(av′
cn
j2
,−1)

Therefore, taking a path corresponding to a satisfied literal
risks collision with just that one obstacle, whereas a path
corresponding to a non-satisfied literal risks collision with
both obstacles.

5.6 Path Risk Encoding MAXQHORNSAT
We define the (1 + α)-approximate safe graph search problem
as φ(G,O, s, t), where G is the set of vertices and edges
constructed in the variable and clause gadgets above, O is the
set of obstacles constructed in the variable and clause gadgets
above, and

s = uv
0

t = vn
ns

.

G and O were constructed such that there will exist
a gap between the risk of a path corresponding to an
optimal assignment and a path corresponding to a suboptimal
assignment. Each variable gadget loop in the top set passes
near a single high-risk obstacle, and there will exist a path
through the mirrored set that does not pass near any additional
high-risk obstacles, and passing near an additional high-risk
obstacle incurs more risk than passing near every low-risk
obstacle, so a minimum-risk path will pass near exactly
nv high-risk obstacles. Any path must also pass near at
least one obstacle for each clause gadget, and it will pass
near an additional obstacle for each unsatisfied clause, so a
minimum-risk path will pass near (ns + np + nn + δ) low-
risk obstacles, where δ is the minimum number of unsatisfied
clauses. Recall that there exists a gap between the induced
risk close to an obstacle rc and far away from the obstacle
rf (or rV c and rV f in the case of high-risk obstacles).
Then a path corresponding to an optimal solution to the
MAXQHORNSAT problem will incur risk at most

nvrV c + nvrV f + (nc + δ)rc + (3nc − δ)rf
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Figure 8. An example negative-negative clause gadget, for ¬X1 ∨ ¬X2, illustrating the variable gadget loops and obstacles (blue)
and negative-negative clause gadget loops and obstacles (green). A path assigns a true or false value to each variable by selecting a
branch through the variable gadget loop. It must also select the same variable assignment in the mirrored gadgets at the bottom in
order to avoid additional collision risk. Then, there is no additional risk for taking the branch through the negative-negative clause
gadget loop that corresponds to a satisfied literal.

and a path corresponding to a suboptimal solution to the
MAXQHORNSAT problem will incur risk at least

nvr
′
V c + nvr

′
V f + (nc + δ + 1)r′c + (3nc − δ − 1)r′f .

This allows us to compute a lower bound on the ratio of the
risks between a suboptimal solution and an optimal solution
as

nvr
′
V c + nvr

′
V f + (nc + δ + 1)r′c + (3nc − δ − 1)r′f

nvrV c + nvrV f + (nc + δ)rc + (3nc − δ)rf

≥ nvr
′
V c + (nc + δ + 1)r′c

nvrV c + nvrV f + (nc + δ)rc + (3nc − δ)rf

=
5ncnvr

′
c + (nc + δ + 1)r′c

5ncnvrc + 5ncnvrf + (nc + δ)rc + (3nc − δ)rf

≥
(
r′c
rcβ

+
r′c

20ncnvrc

)
+

r′c
20ncnvrc

≥1 + θ

(
1

n2

)
if we set the obstacle constants such that 20ncnv + β ≥
20ncnvβ, where β = 1 + 3

rf
rc

Each gadget can be constructed in polynomial time, and
the number of gadgets is polynomial, so this reduction can
be constructed in polynomial time. Thus, any algorithm
that can approximate the minimum-risk planning problem
in a graph to a factor better than 1 + Θ( 1

n2 ) can also solve
MAXQHORNSAT with polynomial overhead.

5.7 Hardness of Continuous Planning Problem
We prove Theorem 3 by extending the above reduction
to still apply even without the graph restriction (thereby

reducing to (1 + α)-approximate minimum-risk planning).
Given the graph G and set of obstacles O constructed above,
we surround G with additional obstacles such that a path
cannot deviate from G by more than 2εP , for some small
constant εP . We divide the space of R2 into a grid with cells
of size εP × εP and construct a square obstacle in every cell
that does not intersect with the graph and is within a window
containing all of the gadgets.

Cij =

x

∣∣∣∣∣∣∣
x ∈ R2

iεP ≤ e1
Tx ≤ (i+ 1)εP

jεP ≤ e2
Tx ≤ (j + 1)εP


for all i, j ∈ Z

O′ = O ∪

Cij
∣∣∣∣∣∣∣∣∣
i, j ∈ Z

− 1

εP
2nv ≤ i, j ≤

1

εP
(8nv + 4np)

Cij ∩G = ∅


Note that there are a polynomial number of such obstacles, so
if εP is sufficiently small, the solution to the resulting (1 + α)-
approximate minimum-risk planning problem or lack thereof
is approximately equivalent to that for the original (1 + α)-
approximate safe graph search problem, and so (1 + α)-
approximate minimum-risk planning is also NP-hard.

6 Hardness with Constraints on
Overlapping Obstacles

Hauser (2014) observed that his 3D MCR reduction as well
as the 2D MCR reduction presented by Erickson and LaValle
(2013) required that each obstacle be allowed to overlap with
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O(n) other obstacles. Similarly, we note that the reduction
we present above for 2D motion planning under obstacle
uncertainty also requires that each obstacle overlap with
O(n) other obstacles. This is a relatively unnatural problem
instance, as most real-world problems will not have this
degree of overlap. In this section, we show that the problem
remains hard in 3D even when each obstacle only overlaps
with a constant number of other obstacles.

6.1 3SAT
3SAT is an NP-complete problem that is commonly used
to prove the hardness of other problems (Sipser 1996). The
problem input is a Boolean formula given in conjunctive
normal form, where each clause consists of three literals,
or in other words, it is of the form ((x0 ∨ ¬x1 ∨ x2) ∧
(x1 ∨ ¬x3 ∨ ¬x4) ∧ . . .). The algorithm must then decide
whether there exists any variable assignment that satisfies the
formula. We will consider a 3SAT problem with k variables
x0, x1, . . . and m clauses, where each clause j is of the form
(xju ∨ ¬xjv ∨ xjw).

6.2 Proof Outline
We prove Theorem 4 using a reduction from 3SAT.
Given a 3SAT instance, we construct a κ-overlap (1 + α)-
approximate minimum-risk planning problem as follows.

1. Construct a set of variable assignment layers where
each branch corresponds to a variable assignment.

2. Construct a set of clause layers where each branch
corresponds to selecting a literal to satisfy.

3. For each variable assignment layer, construct a pair of
obstacles for each variable that will encode whether the
variable is set to true or false. There will be additional
collision risk for a path that selects different values in
each variable assignment layer, as well as for a path
that selects a literal that is not satisfied by the value
selected in the preceding variable assignment layer.

The solution to the planning problem can then be transformed
into a solution to the 3SAT instance in polynomial
time, demonstrating that the κ-overlap (1 + α)-approximate
minimum-risk planning problem is at least as hard as 3SAT.

6.3 Proof
6.3.1 Variable Gadgets First, we will construct a variable
assignment layer for each clause j. A variable assignment
layer consists of two PGDF obstacles for each variable i in
the 3SAT problem.

Note that we define a PGDF obstacle as the intersection of
halfspaces of the form αTx ≤ 0 for α normally distributed
and x represented in homogeneous coordinates. Here we
will work with just one face and standard coordinates for
convenience. That is, each obstacle i will be defined as

o =
{
x
∣∣ αi

Tx ≤ 1, αi ∼ N (µi,Σi)
}

.

For obstacle i, the true obstacle will be defined as the
intersection of

αi
Tx ≤ 1

i ≤ e2
Tx ≤ i+ 1

2j − 3

2
< e3

Tx ≤ 2j +
3

2

x

Âx

y

Ây

z

Âz

Figure 9. A path through this gadget must go near either the
true or false obstacle for each variable, thereby selecting a
variable assignment.

where αi ∼ N (2e1, e1e1
T ). The “negative” obstacle will

similarly be defined with

βi
Tx ≤ 1

i ≤ e2
Tx ≤ i+ 1

2j − 3

2
< e3

Tx ≤ 2j +
3

2

where βi ∼ N (−2e1, e1e1
T ).

Intuitively the covariance e1e1
T means that αi has

variance 1 in the direction of the normal of the face. This
is important because it means that there is no variance in
the orientation of the face. Also note that each obstacle
overlaps with the corresponding obstacle in the layer below
and the layer above, which we will later show to be important
in ensuring that variable assignments are consistent across
layers.

Then we will construct the variable assignment graph,
as illustrated in figure 9. Said formally, indexing over the
variable with index i, we embed nodes in locations

(2j − 1)e3 + ie2

(2j − 1)e3 + (i+
1

2
)e2 ± e1

(2j − 1)e3 + (i+ 1)e2.

We then draw edges from (2j − 1)e3 + ie2 to both of (2j −
1)e3 + (i+ 1

2 )e2 ± e1, and from both of (2j − 1)e3 + (i+
1
2 )e2 ± e1 to (2j − 1)e3 + (i+ 1)e2.

6.3.2 Clause Gadgets For each clause j we will construct
an additional graph “layer” in between consecutive pairs of
variable layers that lets the algorithm choose which literal to
satisfy, as illustrated in figure 10.

Recall that each clause j is of the form xju ∨ ¬xv ∨ xw.
Without loss of generality, let ju < jv < jw. Indexing over j,
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construct nodes at

2je3, 2je3 +

(
ju +

1

2

)
e2(

2j +
1

3

)
e3 +

(
ju +

1

2

)
e2 ± e1(

2j +
2

3

)
e3 +

(
ju +

1

2

)
e2(

2j +
2

3

)
e3

drawing edges between consecutive nodes, and letting ‘±’
represent ‘-’ if xju is given in negated form and ‘+’ otherwise.
Then construct nodes at

2je3 +

(
ju +

1

2
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(the first and last were already constructed previously),
drawing edges between consecutive nodes, and similarly
setting ‘±’ based on the negation of literal xjv . Then construct
nodes at
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e2
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e2(
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e2(
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(
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1
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(the first and last were already constructed previously),
drawing edges between consecutive nodes, and similarly
setting ‘±’ based on the negation of literal xjw . Intuitively,
this creates three possible routes through the graph, each
going near the obstacle corresponding to a particular value
assigned to a variable.

A path through this gadget must pick one of the literals
in the clause to satisfy and pass near the obstacle that
corresponds to that variable and the value the literal requires
it to have. In doing so, it may incur risk of intersecting with
the obstacle. If this variable was assigned to the value the
literal specifies, then the path would have already gone near
this obstacle so no further risk is incurred. However, if the
literal contradicts the variable assignment, the path will incur
additional risk for going near this obstacle.

6.3.3 Full Reduction Now we combine the variable and
clause gadgets, as seen in figure 11. As in Section 5.7, we

construct a grid of deterministic obstacles to force the path to
remain near the graph. Given the graph G and set of obstacles
O constructed above, we surroundGwith additional obstacles
such that a path cannot deviate from G by more than 2εP ,
for some small constant εP . We divide the space of R2 into
a grid with cells of size εP × εP × εP and construct a cubic
obstacle in every cell that does not intersect with the graph
and is within a window containing all of the gadgets.

Cz =

{
x

∣∣∣∣∣ x ∈ R3

ziεP ≤ xi ≤ (zi + 1)εP ∀ i ∈ {1, 2, 3}

}
for all z ∈ Z3

O′ = O ∪

Cz

∣∣∣∣∣∣∣∣∣
z ∈ Z3

− 4

εP
≤ 1√

3
|z| ≤ 1

εP
(k +m+ 4)

Cz ∩G = ∅


6.3.4 Path Risk Encoding 3SAT This graph was con-
structed such that there will exist a gap between the risk
of a satisfying assignment and of a non-satisfying assignment.
First we note that for the PGDF obstacle model as well as
most reasonable alternative formulations, there exists a gap
between the induced risk close to the obstacle and far away
from the obstacle. In particular, there is some rc that lower-
bounds the risk computed from the shadow approximation for
the closer points and rf that upper-bounds the computed risk
for the further point. A path through the variable assignment
portion of the graph will go near km obstacles for the k
variable assignments it makes, each repeated m times. Then
it will be “close” to km obstacles and “far” from the other
km obstacles. Therefore, it will incur risk kmrc + kmrf .

If a path through the variable assignment portion encodes a
satisfying assignment to the 3SAT problem, there will exist
a path through the remainder of the graph that will not incur
any additional cost. If there is no satisfying assignment, then
any path through the remaining portion must go near an
obstacle that it did not go near in the variable assignment
portion, so for some variable i, the optimal path must go
close to both the true and false obstacles, incurring cost at
least (km+ 1)rc + (km− 1)rf . This allows us to compute
a lower bound on ratio between the two risks:

(km+ 1)rc + (km− 1)rf
kmrc + kmrf

=
kmrc + kmrf + rc − rf

kmrc + kmrf

=1 +
rc − rf

kmrc + kmrf

=1 + Θ

(
1

km

)
.

We note that each obstacle only overlaps with at most
a constant number of other obstacles. In particular, each
obstacle will overlap with the two corresponding obstacles in
the layer above and the layer below, as well as the constant
number of deterministic obstacles forming dividers between
layers.

Each gadget can be constructed in polynomial time, and
the number of gadgets is polynomial, so this reduction can
be constructed in polynomial time. Thus any algorithm
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Figure 10. A path through this gadget must select one of three paths to go through, each going near the obstacle for the
corresponding literal.

Figure 11. The bottom layer is the first variable assignment layer. The top layer is the first clause gadget. There would usually be
many more clause gadgets stacked on top with additional variable gadget layers in between.

that can approximate the κ-overlap (1 + α)-approximate
minimum-risk planning problem (regardless of whether a
graph containing the solution is provided) to a factor better
than 1 + Θ

(
1
km

)
can also solve 3SAT with polynomial

overhead.

6.3.5 Extension for Minimum Constraint Removal This
reduction can also be extended to apply to the Minimum
Constraint Removal (MCR) Problem, proving Theorem 5 and
answering the question posed by Hauser (2014). We replace
each uncertain obstacle in the ε-safe planning problem with
an MCR obstacle covering the rc-shadow of the obstacle. As
before, a path corresponding to a satisfying assignment will
collide with km obstacles, whereas a path corresponding to a
nonsatisfying assignment must collide with at least km+ 1
obstacles. Then the ratio between the costs of a nonsatisfying
path and a satisfying path is lower bounded by

km+ 1

km
= 1 + Θ

(
1

km

)
.

Therefore, MCR remains NP-hard even when each obstacle
is connected and intersects no more than κ obstacles (κ held
constant).

7 Conclusions and future work

We have shown that the minimum-risk planning problem on
graphs is NP-hard, even in two dimensions. Furthermore,
the fact that it remains hard after restriction to a small
graph indicates that exact algorithms reducing to a graph
search are likely to be impractical in the uncertain domain.
However, barring stronger hardness-of-approximation results,
it is possible that there is a practical approximation algorithm
for solving the minimum-risk planning problem on graphs.
There is also the potential for algorithms that demonstrate
fixed parameter tractability.

There is also the related direction of investigating models
of uncertainty over obstacles. We focus on the PGDF model in
this work because it captures certain desirable characteristics
and has been used in prior work. However, the PGDF model
has certain surprising characteristics, particularly near the
tails of the distribution (Axelrod, Kaelbling and Lozano-Pérez
2017). Perhaps there is a model that is a better fit for obstacle
estimates in practice, that also permits efficient algorithms. In
exploring this direction, it is important to note that we do not
strongly invoke the structure of PGDF obstacles. Interesting
directions for future work also include finding a good minimal
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condition on the obstacle distribution to make the problem
NP -hard.

Another direction of future work is finding upper bounds on
the safe motion-planning problem. While, when there is some
“slack” in the shadows for the optimal solution there is a trivial
algorithm for finding an approximate solution by exhaustively
iterating through an ε−net of shadow configurations (each
one reduces to a motion planning instance that can be solved
by Canny (1991) roadmap algorithm), no exact algorithm
is known. Finally, we hope that this work is not taken as
evidence that the planning problem with uncertain obstacles
is impossible. After all, the robotics community has a long
history of finding heuristic methods that work well on
problems NP-hard in the worst case. We hope this work
highlights why worst case is difficult and leads to the
identification of structure that makes real world problems
solvable in practice, perhaps even with provable guarantees.
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