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Abstract

We present a framework for learning to guide geometric task-and-motion planning (G-TAMP). G-TAMP is a subclass of
task-and-motion planning in which the goal is to move multiple objects to target regions among movable obstacles. A
standard graph search algorithm is not directly applicable, because G-TAMP problems involve hybrid search spaces and
expensive action feasibility checks. To handle this, we introduce a novel planner that extends basic heuristic search with
random sampling and a heuristic function that prioritizes feasibility checking on promising state-action pairs. The main
drawback of such pure planners is that they lack the ability to learn from planning experience to improve their efficiency.
We propose two learning algorithms to address this. The first is an algorithm for learning a rank function that guides the
discrete task-level search, and the second is an algorithm for learning a sampler that guides the continuous motion-level
search. We propose design principles for designing data-efficient algorithms for learning from planning experience and
representations for effective generalization. We evaluate our framework in challenging G-TAMP problems, and show

that we can improve both planning and data efficiency.
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1. Introduction

A mobile manipulation robot operating in complex
environments such as construction sites or homes must
solve task-and-motion planning (TAMP) problems. TAMP
involves integrated task-level reasoning, such as deciding
which object to move, and motion-level reasoning, such as
deciding what motion to use to manipulate an object. TAMP
is a difficult class of planning problems that involves a hybrid
search space, long planning horizons, and expensive action
feasibility checking.

One approach to solve TAMP problems is to take a
pure-planning approach where a user designs a planner for
the given problem (Srivastava et al. 2014; Kaelbling and
Lozano-Pérez 2011; Gravot et al. 2005; Cambon et al. 2009;
Toussaint 2015; Garrett et al. 2014, 2017). The advantage
of this approach is its generality: for any given initial state
and goal pair, most planners will eventually find a solution
if there is one. The major drawback, however, is that it is
computationally inefficient. TAMP planners do not typically
have the ability to learn from past planning experience, and
must solve difficult TAMP problems from scratch even when
the current problem instance is similar to the ones solved in
the past.

Alternatively, we can take a pure-learning approach to
TAMP where we learn a policy that maps a state of the
world to an action using reinforcement or imitation learning
algorithms (Sutton and Barto 1998; Argall et al. 2009). The
key benefit is the computational efficiency: computing the
next action to execute comes down to making a prediction
using a function approximator, rather than performing an
expensive search procedure. The downside, however, is its
limited generalization capability. If a policy encounters a
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Figure 1. Left: moving the red box into the kitchen region.
Right: packing small objects inside the red shelf to the green
box.

state that is very different from the ones seen in training, it
may make mistakes and might get into a situation where it
would not know how to proceed. Collecting a large amount
of data could be a solution, but data tends to be expensive in
robot manipulation problems.

Based on these observations, we take the middle ground
between these two extremes. We propose a framework that,
given a set of planning experiences, learns to guide a planner
by learning search guidance predictors. This approach has
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Figure 2. A part of the search tree for SAHS. Green triangles denote nodes in which abstract action choices are available, and
orange circles denote nodes in which continuous parameter choices are available. (a) The robot has several available abstract
actions. (b) It chooses to explore abstract action Pick(obj,) based on the given heuristic function. (c) The continuous parameters of
the Pick action, which consists of base pose and grasp, are sampled using random sampling; ones that are in collision or do not
have a feasible IK solution are rejected. (d) Once a feasible base pose b and grasp g are sampled, SAHS then calls a motion
planner to see if there exists a motion plan to the selected base pose, and finds a feasible motion m. (e) The next state is
generated, in which the robot has picked up the object with manipulation operation Pick(obj,, (g,b,m)).

the best of both worlds. It is more efficient than pure planning
because the predictors guide the search to more promising
regions of the search space. Also, it is far more robust than
pure learning, as it can rely on the planner to correct for the
mistakes the predictors may make.

We focus on a sub-class of TAMP problems that we call
geometric task-and-motion planning (G-TAMP), in which
we are interested in moving a set of objects from one
region to another among movable obstacles. This subclass
is particularly important because it occurs in every TAMP
problem — whether it is cooking a meal, constructing a
building, or simply putting away groceries, a robot must
efficiently reason about how to arrange obstacles to move
objects to desired regions. Therefore, we believe if we
can solve G-TAMP problems more efficiently, then we can
solve TAMP problems more efficiently. Examples of G-TAMP
problems are shown in Figure 1.

There are two key distinctions between a G-TAMP problem
and standard graph search problem. The first is that G-
TAMP problems involve a hybrid search space that consists of
discrete task decisions and continuous motion decisions. The
second is that G-TAMP involves expensive action feasibility
checking: simulating a pick-and-place action, for example,
requires a call to a motion planner and an inverse kinematics
solver, making the generation of successor states expensive.

To deal with this, we propose a planning algorithm called
sampling-based abstract-edge heuristic search (SAHS).
Unlike traditional heuristic search, in which a state is
expanded and its successors are added to the queue, SAHS
maintains a priority queue of state-and-abstract-action pairs,
which we call abstract edges. The queue is used to prioritize
not only states, but also actions in order to perform feasibility
checking on promising actions first.

Given a problem instance, SAHS searches forward, first
branching on the choice of an abstract action, which
specifies the type of a manipulation operator and its discrete
parameters, such as pick(obji). Then, given the choice of
an abstract action, it branches on the continuous parameters
of the operator, such as the grasp and base pose to pick
the object, using random sampling. The planner calls a
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feasibility checker on the sampled parameters, and the next
state is simulated. Figure 2 shows an example of the search
tree of a G-TAMP problem.

The performance of SAHS heavily depends on the heuristic
function for evaluating abstract edges and the sampler for
sampling continuous parameters. One way to define them
is by hand-designing them, but they would lack the ability
to improve from planning experience. Instead, we develop
learning algorithms that augment a hand-designed heuristic
function and sampler.

There are two fundamental questions in designing these
learning algorithms: what is a data efficient objective
function for learning from planning experience, and what is
a representation that can generalize aggressively for G-TAMP
problems. We describe our design principles for addressing
these challenges.

Objective function design A planning experience dataset
consists of a set of trajectories that led to a goal, each
of which is a sequence of state and action pairs. Like
AlphaGo (Silver et al. 2016), one way to guide search is by
learning the action-value function and prioritizing the search
node expansion based on the action values. In our setting,
we found this to be data-inefficient. Unlike a reinforcement
learning setting in which you perform exploration to gather
additional data, we have a fixed set of planning experience in
which we only have the target values of the actions taken
in the past plan solutions. So to learn the accurate value
estimates for all the actions in a state, we would need to
collect a large amount of data.

Instead, we design our objective function by being
pessimistic about actions not taken in the states in our data.
Given a state, the function learned this way would effectively
suggest an action based on how frequently a similar state-
and-action pair appeared in successful plans. In contrast
to the approach that estimates action values, our strategy
requires only the actions that achieved the goal.

Based on this principle for guiding the task-level
planning, we propose to use the large-margin objective
function (Tsochantaridis et al. 2006) to learn a ranking
function for abstract actions. Given a state, a ranking
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Figure 3. Flow of computations for predicting an abstract action ranking (green) and continuous parameter sample (orange). Given
a scene, a motion planning algorithm and collision-checker first performs low-level geometric reasoning to compute an abstract
problem representation encoded in a graph, and key configuration based representation. For an abstract action ranking, the graph is
fed to a graph neural network (GNN), which performs task-level reasoning to output a ranking. For continuous parameters, the key
configuration based problem representation is fed to a GAN, which performs motion-level reasoning to output parameter samples.

function outputs rank values for the abstract actions, where
the ranking among the actions is determined by their rank
values. Given a state and action pair from our data, the
objective function tries to maximize the margin between the
rank value of the given action and the rest, such that the
former has the highest rank.

We use the same pessimism principle to design the
objective function for learning a sampler that guides the
motion-level planning. More concretely, we use Generative
Adversarial Nets (GANs) (Goodfellow et al. 2014). Similar
to the large-margin objective, in adversarial training, we
learn a discriminator that assigns high values to the actions
that occur in the dataset, and low values to the rest of the
actions. We then train a generator, which in our case is the
sampler, by tuning its parameters to generate actions that
maximize the discriminator values. The result is a sampler
that imitates the actions in the data.

Problem representation design A promising approach
for guiding a search is to first represent the original planning
problem in a relaxed form, solve it using a planner, and
then use the solution to guide the search for the original
problem. This representation design principle has been used
in both task planning (Hoffman and Nebel 2001) and motion
planning (Zucker et al. 2013; Schulman et al. 2014). We use
this intuition in our framework to design relaxed problem
representations for G-TAMP problems.

While both the ranking function and sampler use
the representations designed based on this principle, we
propose separate representations because we believe they
fundamentally require different kinds of reasoning. The
ranking function requires reasoning at the discrete task level,
and the sampler requires reasoning at the continuous motion
level.

For task-level planning, we relax a G-TAMP problem
by representing the original problem abstractly, ignoring
the geometric details of the environment, such as the
poses and shapes of objects. More concretely, the abstract
representation is defined as a conjunction of a novel
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set of geometric predicates. Each of these predicates
computes reachability or occlusion information by calling
motion planning algorithms. For instance, we have the
OCCLUDESMANIP(01, 09,7) predicate, which evaluates to
true if object o1 is in the swept volume needed by the robot to
manipulate object o into region r. Goals are also expressed
using these predicates, by a conjunction of instances of the
INREGION(o, r) predicate, each of which indicates that we
wish to put object o in region r.

Using this representation, we propose a hand-designed
heuristic function that recursively counts the remaining
number of objects to move to get to the goal. To endow
this function with the ability to improve with planning
experience, we augment it using the abstract action ranking
function. The problem, however, is that typical feed-forward
neural networks cannot use as an input the abstract problem
representation that includes relational information and has
varying numbers of objects across problems.

To deal with this, we first encode the abstract
representation using a graph, where each node encodes
predicates of an entity, and each edge encodes the predicates
of a pair of entities. We then use graph neural networks
(GNNs) which can take as an input a graph with varying
sizes. Figure 3 (green) summarizes the flow of computations
for computing the representation and the ranking among
abstract actions.

The additional benefit of using such abstract representa-
tion is the immense generalization capability of the ranking
network. Instead of having our ranking function perform
reasoning based on the original problem representation that
consists of the poses and shapes of the objects in the
scene, we design it such that it only performs the high-level
reasoning based on the abstract representation. The low-level
geometric reasoning is delegated to motion planners that can
be applied to a wide range of environments. This enables our
ranking function to generalize to another environment with
significantly different geometric details without retraining.
We show that we can train our ranking function using only
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the training data collected in the environment shown in
Figure 1 (Left), and it generalizes to the environment shown
in Figure 1 (Right).

For motion-level planning, we first observe that the
continuous parameters often specify, implicitly or explicitly,
a goal configuration for a low-level motion planner. So,
to predict promising continuous parameters, the learned
sampler would have to verify the existence of a collision-
free motion. Ideally, we would use the full configuration
space (C-space) obstacles as input to the sampler, but this is
difficult because we do not have an efficient way to compute
these obstacles.

Instead, we relax the motion planning problem by
approximating the C-space obstacles using a finite but
important set of configurations. More concretely, we propose
a novel C-space-based state-and-goal representation using
key configurations. Key configurations are a sparsely
sampled set of configurations that have been used in the
past planning experience. Using the key configurations, we
approximate the C-space obstacles using a binary vector
indicating collisions at key configurations. We also encode
the goal of the original G-TAMP problem using the swept-
volumes for moving the goal objects to their goal regions,
which, if cleared, would achieve the goal. Figure 3 (orange)
summarizes the flow of computations for computing the
representation and the continuous parameter samples.

We evaluate our planner, representation, and learning
algorithms on two challenging G-TAMP problems shown
in Figure 1. We show that using our design principle
and combination of learning and planning, we achieve
better planning and data efficiency compared to several
benchmarks.

This work is an integrated and extended version of our
prior papers (Kim et al. 2018, 2019a; Kim and Shimanuki
2019). We make the following additional contributions.

* We illustrate how the task-level guidance learning
proposed in (Kim and Shimanuki 2019) and the
motion-level guidance learning proposed in (Kim
et al. 2018, 2019a) can be integrated into a
single framework. We conduct a set of experiments
demonstrating that addition of each guidance to a
planner leads to more efficient planning.

* We offer a unifying principle for designing the loss
functions and representations for both motion and
task level guidance learning. We perform a set of
experiments comparing different representations and
losses, and show that the ones that abides by our
principle is the most effective.

* We propose a probabilistically complete version of our
planning algorithm proposed in (Kim and Shimanuki
2019).

* We use WGAN-GP (Gulrajani et al. 2017) that offers
much more stable training for learning a continuous
parameter sampler, in contrast to a standard GAN used
in (Kim et al. 2018, 2019a).

* We substantially expand the description of the abstract
problem representation, its encoding into a graph,
and the GNN that uses that graph from (Kim and
Shimanuki 2019).
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Related work

Learning to guide planning The most famous system
for learning to guide planning is AlphaGo Zero, which
was developed for the game of Go (Silver et al. 2017).
In AlphaGo Zero, Monte Carlo Tree Search (MCTS) is
integrated with a value function and policy that are learned
from past experience of playing Go. These learned predictors
then guide MCTS into promising regions of the search space
for the future instances of the game. Our framework can be
seen as a version of AlphaGo Zero for G-TAMP problems.

Given the success of AlphaGo Zero, one may wonder if we
can simply use the methods from AlphaGo Zero and apply
them to G-TAMP problems. There are two key differences
between G-TAMP and Go that make such direct application
difficult. First, Go has a discrete action space where each
action is placing a stone on a Go board. In contrast, G-TAMP
problems have a hybrid action space and each action requires
a feasibility check by typically calling a motion planner and
an inverse kinematics solver.

Another key difference is the variability in dimensionality
of the state space. In Go, you may use a board image as a
state representation across different instances of the game. In
contrast, states of G-TAMP problems consist of objects and
their attributes, and if you have different numbers of objects
across different problem instances, then you have variable
state dimensions. Also, a single image of a scene is not a
sufficient representation in general for G-TAMP problems.

Our approach for guiding the abstract action search is
closely related to a substantial body of work on learning
to guide task planning. One line of work learns a heuristic
function on states to be used in planners based on heuristic
search. This is typically formulated as supervised learning
from planning experience on related problems. Perhaps
the most successful of these methods (Yoon et al. 2006)
learns domain-dependent corrections to an existing domain-
independent heuristic. Many approaches learn how to best
combine a variety of domain independent heuristics (Fink
2007; Domshlak et al. 2010). Other approaches (Garrett et al.
2016), like us, learn to rank actions directly. One of the
algorithms in (Pinto and Fern 2017), aims to learn an action-
value function for ranking actions, which we found to be data
efficient in our setup.

For learning to guide TAMP, Chitnis et al. (2016) propose
learning action-values. However, their search is over plan
refinements, rather than abstract actions and they do not
address the state representation problem. Driess et al.
(2020a) propose an approach that directly predicts a task
plan from an initial image of the scene, based on which a
motion-level planning is performed to find a motion plan
that satisfies the predicted task plan. Our method differs
in that (1) we assume we know the poses and shapes of
objects, and (2) we provide guidance both at the task and
motion levels based on a representation that can reason about
occlusion, reachability, and collisions. Driess et al. (2020b)
propose to predict the feasibility of a discrete decision by
learning a classifier using an initial image of the scene.
Our sampler also learns to perform feasibility reasoning
for generating continuous parameter samples, but using key
configuration based representation that enables reachability
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reasoning; also, it not only generate feasible but also goal-
achieving samples. Chitnis et al. (2020) propose an approach
that learns to drop state variables based on experience. This
enables faster planning by allowing a TAMP planner to
ignore a subset of objects.

There is a body of related work on guiding the
choice of continuous parameters given the abstract action
sequences (Kim et al. 2019b, 2018, 2019a; Chitnis et al.
2019). In particular, we directly build on our previous work
on using GANs for learning a sampler (Kim et al. 2018,
2019a), but in this work we use advanced GAN training
technique that offers much more stable training (Gulrajani
et al. 2017).

Task and motion planning algorithms There are several
pure-planning algorithms for TAMP. Many approaches
define separate strategies for planning abstract actions
and finding continuous parameters. Typically, the abstract
action planning (aka task planning) is often done using a
classical task planning algorithms (Helmert 2006), while
the continuous parameter search is performed either using
sampling-based  (Garrett et al. 2014, 2017; Cambon
et al. 2009; Srivastava et al. 2014) or optimization-based
(Toussaint 2015) algorithms. More extensive survey of task
and motion planning methods can be found in Garrett et al.
(2021).

One of the difficulties of using learning algorithms in
these planners is that at the task-level, a planner only has
access to an incomplete state where the low-level geometric
details are not determined (we do not know the poses of
objects). This makes it to difficult to predict the rank of
abstract actions, which requires occlusion and reachability
information. Similarly, for continuous parameters, it is
difficult for the learned action sampler to suggest high-
quality actions if the low-level geometric details are not
known. For this reason, our planner, SAHS, performs a search
with complete states.

G-TAMP problems are very closely related to manipulation
among movable obstacles (Stilman et al. 2007). G-TAMP
generalizes this class of problems by allowing moving
multiple goal objects to goal regions, and lifting the
assumption that the robot must touch each object once.
Rearrangement planning (Krontiris and Bekris 2015; King
et al. 2016) can also be considered as a subclass of G-TAMP
problem, where one is given goal object poses instead of goal
regions.

Graph Neural Networks For guiding the search for
abstract actions, we use an abstract state and goal
representation represented with a graph. To handle this
graph-based input, we use graph neural nets (GNNs).
GNNss (Sperduti and Starita 1997; Gori et al. 2005; Scarselli
et al. 2009) (see surveys of Battaglia et al. (2018); Zhou
et al. (2018); Wu et al. (2019)) incorporate a relational
inductive bias: a set of entities and relations between them.
In particular, we build on the framework of message-passing
neural networks (MPNNs) Gilmer et al. (2017), similar to
graph convolutional networks (GCNs) (Kipf and Welling
2017; Battaglia et al. 2018). A key advantage of GNNs is
that they learn a fixed-size set of parameters from problem
instances with different numbers of entities. After learning,
the GNN can be applied to arbitrarily large sets of objects
and relations. This is crucial for G-TAMP problems where
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the number of objects varies widely across different problem
instances.

Generative Adversarial Networks We use generative
adversarial nets for training our biased-samplers for contin-
uous parameters. Two recent advancements in generative-
model learning, GANs (Goodfellow et al. 2014) and Varia-
tional Auto Encoders (VAEs) (Kingma and Welling 2014),
are good choices for this purpose because an inference is
simply a feed-forward pass through a network. For our
purpose, which involve predicting poses of objects and robot,
we require sharp samples because a small deviation could
mean the difference between feasibility and infeasibility.
GANs are known to generate sharp samples, albeit at the
cost of potentially missing modes Li et al. (2017), and we
use GANS to train our sampler.

The problem with the original GAN (Goodfellow
et al. 2014), which minimizes Shannon-divergence, is its
instability during training. WGANSs (Arjovsky et al. 2017),
which minimizes the Earth-mover’s distance, have been
shown to be more stable, but can lead to difficulty in
optimization due to hard gradient clipping. We use WGAN
with Gradient Penality (WGAN-GP) (Gulrajani et al. 2017)
which improves the training of WGAN by using a soft-
enforced constraint on the gradient of the discriminator.

Planning problem setup

We assume that the environment of a G-TAMP problem
consists of a set of fixed rigid objects ") = {ol(-F) L a
set of movable rigid objects O(M) = {OEM) M and a set of
workspace regions R = {r; }'%,.

A state of the system is determined by the poses of the
movable objects, each of which is denoted PO<_M>, and the

configuration ¢ € C of the robot. The poses of the objects
and regions are defined relative to a parent object, which
can be a movable object such as a tray, or a fixed object,
such as the floor. We denote a state as s € S where s =
(Poth"' ’Poﬁﬁf)’c)' All objects and regions have known

and fixed shapes. We assume that states are fully observable.

We are given a set of n, manipulation operators, O =
{ai, -+ ,a,,}. We assume that an operator manipulates
an object to a region. Each operator takes in as inputs a
fixed number of operation-specific discrete parameters § €
OM) x R, which specify which object moves to which
region. If the object is already in that region, then it moves
it to a different pose in that region. The operator also takes
in continuous parameters K € K 4. The robot might have one
or more such operators available, such picking-and-placing,
pushing, or throwing.

Each of the operators has a set of feasibility constraints,
and we are given a set of external feasibility checkers that
can check the feasibility of the given continuous parameters.
Examples of such feasilbility checkers are an inverse-
kinematics (IK) solver and a motion planner.

We will define the pair of operator type and its discrete
parameters as an abstract action, which we denote with a(9).
For instance, an abstract action

PICKANDPLACE(d = (obj1, tabley))

specifies the robot moves obj; to table; using pick-and-
place. An action, denoted a(d, ), is a concrete operation that
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can be executed by the robot. For instance, we may have
PICKANDPLACE (0 = (0bjy,tabler),x = (g,p))

for pick-and-placing obj; to table; using the continuous
parameter that consists of grasp g and the placement pose p
on table;. Based on k, we call a motion planner and compute
a motion plan associated with «. Note that motion plan is not
part of x, mainly because we will learn a generative model
defined over « but not motions.

Each action a(d, ) induces a mapping T'(-, a(d, x)) from
a world state s, in which it is executed, to a resulting world
state s’ € S. If the operation is infeasible and cannot be
legally executed in s, we let s’ = s or an absorbing “failure”
state. To check the feasibility of an operation, we assume
T(-,-) calls external functions necessary to find a low level
motion. For example, for PICKANDPLACE, T'(-, -) calls an
inverse kinematics solver to find the joint configuration for
the given grasp, and a motion planner to find the motion
plan to that joint configuration; if any one these cannot be
found, then the operation is deemed infeasible. The transition
function 7' is deterministic. But in practice, it may return
different results for the same inputs depending on the result
of the external function calls, which must compute the
desired values within a time limit.

We specify a goal set G as a conjunction of statements
of the form INREGION(o,7), where 0 € O*) and r € R,
which are true if o is contained entirely in region 7. It
is also possible to specify the final robot configuration as
part of the goal for NAMO problems (Stilman and Kuffner
2005), or final poses of objects for specifying rearrangement
problems (Krontiris and Bekris 2015; King et al. 2016).

A G-TAMP planning problem is characterized by
(0O O R,s09,0,G,T), where (O™ OF) R)
defines the environment, and sq is the initial state. The
objective is to find a sequence of actions that changes the
state from sq to a state that satisfies G.

Sampling-based graph search algorithm

SAHS is a greedy-search algorithm that prioritizes explo-
ration of abstract edges, defined by a pair of a state
and abstract action, using a heuristic function. Before we
describe SAHS and our heuristic function, it is worthwhile
to examine the characteristics of the task-level reasoning in
G-TAMP problems to illustrate what we wish to capture in the
heuristic function.

In a G-TAMP problem, the given goal is achieved if we
move each goal object to its corresponding goal region. So,
in a state, the remaining number of objects to move to get
to the goal is a useful heuristic. To enable computing such
a heuristic, we construct an abstract problem representation
that enables us to estimate it using recursive counting.
Subsequently, we show how to encode this representation
in a graph that can be used by a graph neural network to
effectively suggest abstract action ranking.

Abstract problem representation

To capture reachability and occlusion information in a state,
we make use of the assumption that each action manipulates
a single object to move it to a region or to a different pose
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Figure 4. Left: Vie(g, a(d, <)) where a is pick-and-place, § is
the red box, g is configuration of the solid robot. « is not shown.
Right:Vinanip (a(, x)) where a is pick-and-place, ¢ is the red box
and home region marked yellow, and « is the robot’s base pose
at the end of the trajectory inside the home region

within its current region. Under this assumption, we can
characterize the preconditions of executing an action a(d, x)
with two volumes of workspace.

Assume § = (o, r) for some object o and for some region
r, and the continuous parameters « are chosen so that if the
robot uses action a(d, k), then it can move o to region 7.
The first volume, Vie(g, a(d, k)), is the swept volume that
the robot may move through from its current configuration
g to a configuration ¢’ in which object o can be reached.
The second volume, Viynip(a(d,)), is the swept volume
that the robot and object may move through, from their
configurations at the beginning of the operation, (P,,¢’), to
their configurations at the end of the operation, as determined
by continuous parameters «. Figure 4 shows examples of
these two swept volumes.

Of course, there are many such swept volumes that would
suffice for each of these actions, corresponding to different
choices of paths. We simply use a “nominal” path generated
by a call to our path planner, which we will describe soon.

We construct a relational abstract representation of the
state s and goal G, denoted «/(s, ), as a conjunction of all
true instances of the following predicates, applied to entities
e € O U R in the environment:

* ISREGION(e), true if e is a region;

* ISOBIECT(e), true if e is an object;

» ISGoAL(e), true if e is mentioned in the goal
specification G;

* INREGION(o, '), true if object o is currently in region
T

* PREFREE(0), true if 3« such that Vi (q, a((o,7), ))
is collision-free;

* MANIPFREE(o,r), true if 3k
Vinanip (a((0, ), &)) is collision free;

* OCCLUDESPRE(01,02), true if o7 is an object
that overlaps the swept volume V. (g, a((02,7), k)),
where « is chosen to avoid collisions if possible; and

such that
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Figure 5. Example evaluations of OCCLUDESPRE (left) and OCCLUDESMANIP (right). In the left figure, the robot is trying to pick up
the box marked with the red circle, and plans a motion whose swept-volume is shown with the transparent robots. There are two
obstacles, marked with white circles, in collision with this motion, making OCCLUDESPRE (owtite; , Orea) @nd

OCCLUDESPRE (0white, , 0red) 10 true, and OGCLUDESPRE(0, 0req) to false for all the other movable objects 0 € O In the right
figure, the robot is trying to move the red box to the kitchen region located on the top, and plans the manipulation motion whose
swept-volume is shown with the transparent robots. There are three objects, marked with white circles, in collision with this motion,
S0 OCCLUDESMANIP (Owhite, , Ored, Tkitchen) 1S true for ¢ € {1, 2,3}, and OCCLUDESMANIP(0, 0red, Tkitchen) is false for all the other

movable objects 0 € 0?1,

* OCCLUDESMANIP(01, 09,7), true if o7 is an object
that overlaps the swept volume Vianip(a((02,7), K)),
where k is chosen to avoid collisions if possible.

Example evaluations of  OCCLUDESPRE and
OCCLUDESMANIP are shown in Figure 5. The detailed
implementations for the last four relations are specific to
an operator fype, such as pick-and-place or pull. The value
of any of these predicates, if applied to arguments that are
clearly the wrong type, is false.

Given state s and goal G, we must compute values
for all instances of these predicates in that domain. The
last four require non-trivial computation, including finding
feasible « values and computing the motion plans to
obtain the necessary swept volumes. This involves finding
 and associated trajectories so that Viyanp and Vi have
the minimum number of collisions with obstacles in the
world. This problem, known as minimum constraint removal
(MCR) problem, is known to be very costly in the general
case (Hauser 2014).

So, we compute them by selectively ignoring movable
objects: first, we attempt to find a collision-free « and
trajectory. If that fails, then we simply find « and a trajectory
that are collision-free with respect to the fixed obstacles, but
may collide with movable obstacles. We also reuse samples
of x and paths by extensively caching them to make the
repeated computation of the predicates efficient. This is
described in the appendix.

A default heuristic function for G-TAMP

We now describe our hand-designed heuristic function which
estimates the number of objects that need to be moved to
achieve the goal given the state representation «(s,G) and
the abstract action a(d). Recall that it must, in general, move
the objects specified in the goal, as well as whatever other
objects obstruct its ability to move those named in the goal.
Let M denote a set of objects such that, there is a way
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to move just those objects to achieve the goal, and such
set with the minimum cardinality as M*. Ideally, we would
define our heuristic function so that it maps a(s, G) to |[M*|,
which would be an optimal heuristic function. Unfortunately,
determining |M*| is NP-hard.

Instead, we take a greedy approach. Our method estimates
a set of objects the robot needs to move, M, starting with
the goal objects. It then recursively considers objects that
occludes the objects already in M, which are added to M.
Our heuristic function based on this scheme, H-COUNT, is
described in Algorithm 1.

Algorithm 1 H-COUNT(«(s, G))

- M= {Og‘(OG,Tg) egAn ﬁINREGION(Og,Tg)}
2: queue = Queue()

3: queue.add(o) for o € M

4: while queue is not empty

5. 0m = queue.pop()

6. foroe QM)

7: if OCCLUDESPRE(0, 04,,) V 3r 5.t OCCLUDESMANIP(0y, , 0, ")
8: M =M U{o}

9: queue.add(o)
10 end if

11:  end for
12: end while
3: return |M|

—

The algorithm begins by initializing the set M with the
goal objects not in their designated goal regions. It then
initializes a queue with all the objects in M. Then, it
pops an object o,, from the queue, and checks whether
for all o € O, OCCLUDESPRE(0,0,,) is true or if
OCCLUDESMANIP(0,,,, 0,7) is true. If so, o is added to M
and the queue. The process repeats until there are no more
objects to be added.
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H-COUNT is not an admissible heuristic. It overestimates
|[M*|, because the cardinality of M depends on the order
in which we add objects to M. We greedily add objects
that occlude objects already in M, instead of finding the
ordering that would result in |[M*|. Moreover, because our
geometric predicates are not computed based on an exact
MCR algorithm, the swept-volumes used for computing
occlusions also tend to report more collisions than necessary.

Because this is an overestimate of the true cost-
to-go, |M*|, we try to compensate by subtracting
|Oachieved(a(s,G))|, which is the number of goal objects
already in their designated goal regions in the given state;
this would prefer states with more goal objects in their goal
regions.

We also prioritize abstract edges (state-and-abstract-action
pairs) instead of just states in order to prioritize feasibility
checking on actions and expansions. To do this, we add
a term that discourages manipulating goal objects that are
already in the goal region. Putting everything together, our
heuristic function for an abstract edge, which consists of
an abstract state a(s,G) and abstract action a(d), where
0 = (o,7), is given by

H(a(s,G),a(0); G) = H-COUNT(a(s,G))
- |Oachieved(a(s)7g)|

+ ]]-INREGION(O,T')/\(O,T)EQ

ey

Sampling-based abstract-edge heuristic search

Algorithm 2 describes SAHS, which takes as inputs an initial
state sg, set of goal states G, hyperparameters for sampling
continuous parameters of operators Np,, and Ngpp, an
abstract-edge heuristic function h(,-), and budget, which
indicates is the total resource allocated to finding a solution,
such as time limit or the total number of iterations.

Algorithm 2 SAHS(50, G, Nempt; Nmp,budgets 1(+, -))

1: while not budget_reached

2:  queue = PriorityQueue()

32 foroc OM xR,aec A

4: queue.add((so, a(0)), h(a(s,G), a(d)))
5:  end for

6:  while not queue.empty

7 s, a(d) = queue.pop()

8 k = SMPLCONT(s, a(0), Nempt, Nmp)

9 if x is feasible

10: s’ =T(s,a(d,k))

11: s'.plan = s.plan + a(4, k)

12: ifs'eg

13: return s’.plan

14 end if

15: for’ e OM xR,ae A

16: queuve.add((s',a(d")), h(a(s, G), a(d)))
17: end for

18: end if

19:  end while
20: end while

The algorithm begins by creating a priority queue and
putting abstract edges from the initial state into the queue
with their heuristic values as their priorities. At each
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iteration, the algorithm selects the abstract edge with the
lowest heuristic value, and attempts to construct a successor
state by sampling feasible continuous parameters for the
abstract action in the associated state using the function
SMPLCONT, a sub-procedure in SAHS.

Because calling a motion planner is the most expen-
sive computation in generating the successor state, the
SMPLCONT function tries to reduce the number of motion
planning calls. It first attempts Nypp times to sample Ny
continuous parameter samples that satisfy constraints other
than the existence of collision-free motion. For instance, it
checks the existence of an IK solution and for collisions at
pick or place base poses for a pick-and-place action. We call
the samples that satisfy these cheap-to-evaluate constraints
partially feasible samples. If we cannot find any partially
feasible samples, then SMPLCONT returns an empty set.
Otherwise, for each sample in the partially feasible samples,
we call the motion planner to see if there exists a feasible
motion. If there is, then we return that value.

If SMPLCONT returns feasible continuous parameters, we
simulate the successor state using the transition model. If
the successor state is in the goal set, it returns the plan by
retracing the plan to the root. Otherwise, it checks if the
plan length is less than the planning horizon, and if so, adds
the abstract edges to the queue. If it fails to sample feasible
continuous parameters, it moves onto the next abstract edge
on the queue. Unlike discrete graph search, our search space
involves continuous values, so when the queue is empty we
add the initial abstract edges back to the queue so that we can
revisit abstract action sequences, while sampling different
continuous parameter values.

This algorithm, as given, is not probabilistically complete.
To guarantee probabilistic completeness, we need to revisit
each sequence of abstract actions infinitely often with
increasing effort to sample continuous parameters. We can
do this with a slight modification to SAHS, but we present this
particular version which is more intuitive to understand. The
probabilistically complete version of our algorithm, along
with its proof, is given in the appendix.

Learning to rank abstract actions

The heuristic function shown in Eqn. (1) prioritizes abstract
edges primarily based on the number of objects to move in
a state. Its prioritization of abstract actions within a state,
however, is rather naive — it only discourages the given
abstract action if it tries to move a goal object already in its
goal region.

We may, using our abstract representation, hand-design a
method for prioritizing abstract actions, such as preferring
an abstract action that manipulates a reachable object or an
object that occludes many other objects. However, we found
this to be ineffective and tedious.

Alternatively, we could learn an action-value function,
and then use the action-values to prioritize abstract actions
choices. But this is data inefficient because to obtain accurate
values of all of the actions of a state, we would need the target
values for many of them. However, in our training data, we
only have values of actions that led to the goal. So, we take a
different approach.
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Rather than estimating action values, we use a ranking
function that deliberately discourages taking actions missing
from the training data. More concretely, a ranking function
takes as inputs a pair of abstract problem representation
and actions, and outputs a rank value for that pair. The
rank among the abstract actions within the abstract state is
determined by this rank value — the higher the rank value,
higher the ranking.

Our learning algorithm assumes that we have plans that
were obtained by solving past problem instances, where each
plan is a sequence of state-action pairs,

[(s0,a0(d0, K0)), - - -, (571, 07—1(d7—1, Kr—1)), (57, 0)] .

Here, sp € G and G denotes the goal for which that plan was
made. From this, we can construct I" + 1 supervised training
examples of the form («a(s, G),a:(d;)). Aggregating this
data from multiple start-goal pairs, and partitioning it
according to each abstract action type a, we end up with a
dataset D, for each a, with entries of the form («(s¢, G), d).

Denote the rank function for action type a parameterized
by 6 as Fy(-,-;0). We wish to rank the abstract actions
such that the actions that appeared in past plans have higher
rank values. This is implemented using the following large-

margin loss

L) = max(0,1 — M(a(s,G),d;0)),
(5,G,6)€ED,

where
M(a(s,G),9;0)

- - /

=F,(a(s,G),0;0) — 6/?&%6} Fy(a(s,G),0';0)
Let us examine this objective function for a single data tuple
(s,G,9). Intuitively, the function is penalizing F,, when the
difference between the rank value of § and the max value of
the rest of the actions, A \ {4}, is smaller than 1. The term
max (0,1 — M(«a(s,G),d;0)) grows linearly with respect to
this difference if the difference is smaller than 1. Otherwise,
it evaluates to 0.

Augmenting the hand-designed heuristic
function

As mentioned, the heuristic function H in Eqn. (1) is
primarily evaluating states but not the actions within a state.
We now show how we can use our rank function to evaluate
the actions within a state. One naive way is to simply add
the rank value, Fy(a(s,G),0;0) to H. However, the rank
value can be any real number, and may override our heuristic
function. We wish to avoid this because our rank function
is trained by comparing values of actions within a state, not
across states. So, we scale the rank values so that they take a
value between O and 1. The abstract-edge heuristic function
that we use is

H.x(a(s,G),a(d)) =H(a(s,G))
exp (Fu(a(s.9),5:0))

exp (Lo g For(0(s.9).5:0))
@
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Let us examine this heuristic function. The first term is our
hand-designed heuristic function, as defined in Eqn. (1). The
second term is responsible for ranking abstract actions within
a state, normalized to be between 0 and 1; the higher the rank
value, the lower the heuristic value for that action.

To use this with SAHS, we put abstract edges in the
search queue according to H,x values. For abstract edges
with the same state, an abstract edge that has the highest
Fa(a(s,G),0;0) value will be explored first. For abstract
edges with different states, the abstract edge with a state that
has the highest H(«(s, G)) value will be explored first, and
for all the abstract e(iges with the same state, the one with
the with the highest F,(«(s, G), §; 0) value will be explored
first.

Representing the rank function

The rank function takes an abstract state representation as
an input. The challenge in using the abstract representation
a(s,G) with a neural network is representing the abstract
state in a form that can be used as an input to a NN
and designing a NN architecture that effectively uses that
representation. Because our abstract state is relational,
one natural way to represent it is using a graph, where
each node is associated with an entity, and each edge
encodes the relationship among multiple entities. Typical NN
architectures, such as fully-connected NNs or convolutional
NNs, cannot handle such graph and require a fixed-size
vector as an input. Moreover, we need to collectively
consider the relationships among «all the entities, which
requires information propagation from other entities to
compute a value of a single entity.

We use graph neural networks (GNNs) to resolve these
issues. GNNs take as an input a graph, computes messages
at nodes and edges, performs rounds of message passing, and
outputs quantities of interest. For us, the input to a GNN is
a graph representation of an abstract state-and-goal, and the
output is a set of rank values of moving object o into region
r for all objects and regions.

One of the biggest design choices in using a GNN is
the input graph structure. It must be designed such that it
encodes all the necessary information, and the information
flows to appropriate nodes. One distinctive aspect in our
application is the ternary predicate, OCCLUDESMANIP,
which takes three entities as an input. Encoding this
requires a hypergraph, where each edge connects three nodes
associated with the corresponding three entities.

Using our domain knowledge, we ensure that each edge is
connected to nodes associated with the entities with correct
types for the predicates on that edge. For instance, it is
unnecessary to have an edge that connects three object nodes,
because OCCLUDESMANIP requires two objects and a
region. So, we construct a graph such that we have a separate
component for each region, where for each component, we
have [O(™)| + 1 number of vertices for all the objects and
the associated region. Each edge connects two objects and
a region, and encodes binary and ternary predicates. This
representation allows us to define the edges in a hypergraph
with a tensor of dimensions |O)| x |R| x d, where d,
is the dimensionality of an edge feature. An example of our
graph is shown in Figure 6.
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Node(os) Node(o1) Node(os) Node(o1)

Edge(o1,02,71) Edge(o1, 02,72)

Node(rs)

Node(02)

Node(02)

Figure 6. The graph encoding the geometric predicates of a
scene with three objects o1, 02, and o3 and two regions r; and
r2. We represent a scene with a graph with two components,
where each component of the graph is a fully connected graph
associated with a region. On the left is a component associated
with region r1 and right is the one with associated with 2. Each
Edge(o;,0;,7%) encodes the set of binary predicates associated
between two objects o; and o;, such as INREGION(o;, 0;), and
the ternary predicate associated with the two objects and region
7%, OCCLUDESMANIP(0;, 05, T%).

We now show how Node and Edge vectors in Figure 6 are
defined. Define x., as a vector of unary predicate values for

each entity e; € OM) yR,

Ze, = [ISOBJECT(e;), ISREGION(e;), ISGOAL(e;), PREFREE(e; )]

For all ordered pairs of entities e;, e;, we define z.,.; as a
vector of binary predicate values,

xe,yej

= [INREGION(e;, e;), OCCLUDESPRE(e;, €;), MANIPFREE(e;, €;)]

For all entities e;, e; and region ry, we define Ze,c,r, as a
ternary relation value

Teye;ry, = [OCCLUDESMANIP(e;, €5, 7%)] -
We define Node(e;), as
Node(e;) = @,

At an edge between objects o; and o; on the component
associated with region 7;, we have an edge vector
Edge(o;, 0;,7) defined as

Edge(0;, 05, 7%)

= [‘roi k) :L.Oj k) inO]‘ b 'I.O]‘Oi b xoirk b 'TO]‘Tk b inO]”l‘k, b 'I.O]‘Oi’r’k]

Within each component of the graph shown in Figure 6,
we see that the graph is fully connected. The reason for this
is to minimize the inference time. For the GNN with a given
number of edges and nodes, this amounts to minimizing the
number of message passing rounds while propagating all the
necessary information. With this fully-connected structure
within each component, two rounds of message passing is
sufficient to propagate the necessary messages.

To see this, consider an abstract action that moves object o
to region 7. To evaluate this action, we need to consider the
following three factors based on its direct neighbors: (1) is o
already in r? (2) what objects or regions does o occlude?
and (3) what objects is o occluded by? If we make the
graph fully connected, all of these factors can be considered
with a single message passing round. Equally important for
evaluating moving o to r is the information from indirect
neighbors: is the object that occludes o or occluded by o
in turn occluding or occluded by some other object(s) o'?
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For our graph structure, two rounds of message passing is
sufficient to propagate these pieces of information.

The details of the computations in our GNN, such as what
aggregator function we use and how we define the node and
edge embedding functions, are included in the appendix.

Learning biased samplers for continuous
parameters

So far, we have described our method for guiding the
search for abstract actions. We will now describe our
strategy for learning a sampler to guide the search for
continuous parameters. We begin with our relaxed problem
representation based on key configurations, which is used as
an input to our sampler.

Problem representation using key
configurations

To improve planning efficiency, the continuous parameters
predicted by a learned sampler should satisty the feasibility
constraints. Typically, these continuous parameters implic-
itly represent the goal configuration for the low-level motion
planner, such as a base pose and grasp for picking an object.
So, to generate promising values, we need a representation
of the scene that enables a NN to infer the existence of a
collision-free motion.

Ideally, we would use C-space obstacles, but this generally
is prohibitively expensive to compute. So, we approximate
the collision information at essential regions of the
configuration space, using a set of key configurations. Key
configurations are a set of configurations that we construct
by first collecting from our planning experience a set of
robot configurations that were used in the plan solutions, and
then sub-sampling them using a threshold on the distances
among them. Given a scene, we represent the state using
the collision information at these key configurations. Our
insight is that we do not need to completely construct the
configuration space obstacles, but only at essential regions
of the C-space that the robot is likely to re-use in the future
problem instances.

Another essential pice of information that we need to
capture is the goal for our original problem. We use binary
vector representation of Vinanip(0(0c, 7)) for all goal object-
region pairs mentioned in the G, (og, r¢g), to encode this.
For each configuration in Vianip(0(0G, 7)), we check if the
distance to the closest key configuration is below a threshold,
and set it to 1 and otherwise to 0. While this may not be the
actual swept-volume for moving the goal object to the goal
region, it represents an approximation of it.

Combining these two types of information, our key-
configuration-based problem representation is an ng by 2
matrix whose first column is a binary vector representing the
collision information, and the second column representing
Vinanip (0(0@, 7@)) Yog, 7 € G. Figure 7 shows an example
of state and goal representation based on a subset of key
configurations.
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Figure 7. (Left) a subset of key configurations used for this domain. (Middle) key configurations that are in collision. (Right)
key-configuration-representation of Vinanip(0(0c, ra)) for the two goal red objects marked yellow circles. The state and goal are
represented as a binary vector of shape nx by 2, where the first column encodes collision information shown in the middle figure,
and the second column encodes Vianip (0(0c, 7)) shown on the right-most figure

Learning a biased sampler from planning
experience

Now that we have a representation, we describe the learning
algorithm for the sampler. We are given the same sequence of
state-action pairs that we considered in the previous section,

[(s0,00(00,K0))s- - -, (871, 07—1(0p—1, K7—1)), (57, )] »

in which sy € G. Like the large-margin objective in Eqn. (2),
we use the pessimism principle to discourage actions missing
from data. Unlike Eqn. (2), however, we cannot minimize the
maximum value of the missing actions, because we have a
continuous space for parameters.

One observation we can make is that we do not have
to assign low values to all of the continuous parameters
that are not in the dataset, but only to the ones that our
sampler generates. So, we assign arbitrary low values to the
continuous parameters if they are being generated by our
sampler and are very different from the ones in our dataset.
We implement this intuition using GANs.

In a GAN, we train a discriminator, which evaluates state
and continuous parameter pairs based on how frequently they
appeared in the data. We then train a generator, which in our
case is the sampler, using the discriminator as its objective
function. The objective function for the discriminator, D, is

mDinESNPS [EHNPMS:S [log D(¢(3))7“)H
+Ex~p, [log(1 — D(¢(s),a))]

where ¢(s) represents the state and goal represented with
key configurations, P s—; is the desired distribution over
continuous parameters in the given state, and P, is our
learned distribution over continuous parameters given s.

Let us examine this objective function. The first term is
trying to increase the values of state-and-action pairs in our
data, which is similar to Eqn (2); now if we are to follow the
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same intuition as Eqn (2), we would have to have a term that
decreases the max value of the rest of the actions.
Unfortunately, we have a continuous space, and this
is difficult to enforce. So instead, the second term in
this objective function minimizes the values of parameters
generated by the learned sampler. This allows assigning
arbitrarily low values to the generated actions if they are very
different from the ones in the data. When they are similar, the
first term prevents it from assigning arbitrarily low values.
Using D as an objective function, we train our sampler

meax Evnpy(i|s) [D(D(5), K)] -

The two networks are trained in an alternating fashion, and
under a specific set of assumptions, we can show that Py
converges to Pr g (Goodfellow et al. 2014).

In practice, however, the adversarial nature of this training
scheme makes training unstable. So unlike our previous
work, we use Wasserstein GANs (WGANSs) (Arjovsky et al.
2017), which have proven to have more stable training
behavior than GANs. Our objective function for training the
distribution Py that approximates Py s is

max  Eupy [Eurye, [D(55)] ~ Enrp, [D(s, 0]

De||D||r <1
where ||D||r, <1 indicates the set of all 1-Lipschitz
functions D : S x K — R

We represent the function class ||D||;, <1 with neural
networks parameterized by «, which we denote D,. To
enforce the 1-Lipschitz constraint on these neural networks,
the original WGAN used hard gradient clipping which leads
to difficulty in optimization.

Instead, we use WGAN with Gradient Penality (WGAN-
GP) (Gulrajani et al. 2017). This method uses a soft
constraint on the norm of the gradient of the function D,
based on the observation that a differential function is 1-
Lipschitz if and only if its gradients have norms of at most 1
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Algorithm 3 WGAN-GP(D g, A\, i, Ne, b, 79, I70)

for t = 0 to niot
for t. = 0ton.
for t,, = 0tony
(Sa)’,fm) ~Dg
PO Pz(2), méi) ~ we(s(i)7z(i>)
€D~ U0,1], 4 = ex™ + (1 — €)™
LD = Do (5D, ) — Dy (sD, 657) +
. . 2
A (I1V 0 DG, 5Dl — 1)

end for ’
o = a+ Adam(lrq, Va"ib S L)
end for

{Z(i)}?:bl ~ Pz(2)

0 = 6 + Adam(lr, Vgnib " f(sD, w(s@, 29)))
end for
return 7o

everywhere. Our objective for training a discriminator is

is generated by a sampling-based algorithm. The details are
in the appendix.

Experiments
Domain description

We consider two different environments. One is the box-
moving domain shown in Figure 1 (left) where the objective
is to move a set of boxes from their initial locations to
the kitchen region. The second environment is the cupboard
domain where the robot has to move a target object from
the cupboard to the packing box shown in Figure 1 (right).
A problem instance consists of an initial state, defined by
the poses of movable objects, and the goal represented with
a conjunction of INREGION predicate instances. Problem
instances are generated by randomly sampling the initial
object poses and randomly choosing goal objects.

The numbers of movable objects are 8 and 10 for
box-moving and cupboard domains respectively. So, the
state-space for the box-moving domain is SE(2)® x Cpase X

minE,. pg [ENN Prcjs—s [Da(s, k)] + Epup,(i)s) [Dals; £)] +Ceftarm X Crightarm for the combined configurations of 8

A-Eanpy [(HVKDO(S”%”‘Q B 1)2} }

Here, the last term is responsible for softly enforcing
the Lipschitz constraint. Since enforcing the constraint
everywhere is intractable, WGAN-GP enforces it only on
the samples from Pj, where Py is defined as a uniform
distribution on a straight line between a pair of samples from
P, K|S and P, 9-

The pseudo-code of our learning algorithm is shown in
Algorithm 3. It takes in as inputs the training dataset D,
gradient penalty scale term J\, total number of iterations,
Ntot, NumMber of gradient steps for discriminator training at
each iteration, n., the batch size ny, and learning rates for
the sampler and discriminator, Iy and [r,, respectively. It
first begins by training the discriminator. At each iteration
of discriminator training, it creates a batch of & values, by
sampling a point from D g, and generating a point from 7g.
It then samples a random number uniformly between 0 and 1
and uses this as a weight to mix the point from D g and point
from 7. These are used to compute our objective function
for each point in our batch, L@, Once all of these values
are computed, then we take a gradient step using the Adam
optimizer(Kingma and Ba 2015). We repeat these steps n.
times and then update sampler. The entire process is repeated
N¢or NUMber of times.

One of the fundamental challenges in learning a generative
model is evaluating a trained model. For its typical
application of generating images, measuring the quality of
a generated image is difficult. Fortunately for us, the action
space is relatively low dimensional, and we can use Kernel
Density Estimation, which is too expensive to use during
inference time, but fast enough for evaluation, to evaluate the
quality of the trained model. To do this, for each state in our
dataset, we generate 100 samples and then fit it with Kernel
Density Estimation (KDE). We then measure the likelihood
of the continuous parameters for that state using KDE. We
average the likelihood across all states in the dataset, and
discard the trained weights if the average likelihood value
are too low. We also perform data cleaning because our data
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boxes, and the configurations of two arms and base. For
the cupboard domain, it is SE(2)'0 X Cpase X Cright-arm for the
combined configurations of 10 small cupboard objects, and
the configurations of a single arm and base.

To make sure that each problem instance is non-trivial (i.e.
cannot be solved by simply moving just the goal objects to
goal regions), we define the distribution over initial object
poses such that the robot must manipulate at least 2-3 objects
besides the goal objects. In the box-moving domain, we
do this by randomly placing at least 3-4 objects at the exit
and around the robot. Similarly in the cupboard domain, we
randomly place the goal object at the back of the cupboard to
ensure the robot must rearrange at least 2-3 objects.

While our framework can be applied to cases where
we have multiple manipulation operators, we focus on the
pick-and-place operator in our experiment. For the box-
moving environment, we have two-arm pick-and-place; for
the cupboard environment we have one-arm pick-and-place.
The pick operation is defined by two continuous parameter
vectors: the first is a grasp vector, denoted with (d, h, ), that
specifies a depth d, as a fraction of the size of the object in the
approach direction, height h, as a a fraction of object height,
and angle in the approach direction Y, respectively. d and z
has a range [0.5, 1], and x has a range [, 71]. The second is
the pick base pose vector, (22, y2,?), which represents the
robot base pose relative to the pose of an object o, whose
pose in global frame is (z,, Yo, 1,). For the two-arm case,
the grasp parameters (d, h, x) specify the mid-point of the
two grippers and for the one-arm case they specify the mid-
point of the right arm’s gripper. The continuous parameters
of place operation is specified by the robot base pose in the
world reference frame, and assume that the arms are fixed
when the robot’s base is moving.

Given an object, a grasp and base pose for pick, an
inverse kinematics solver is used to generate collision-free
arm configurations for picking at the specified base pose
and grasp parameters. In the box-moving environment, once
we determine the pick-and-place continuous parameters, we
plan the base motion plans for both picking and placing
the objects. In the cupboard environment, we omit motion
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planning and simply check collisions at the pick and place
configurations, which is sufficient in this domain.

We use OpenRAVE simulator (Diankov 2010) with
the Flexible Collision Checking library. We did not
simulate physics. We use bidirectional Rapidly-exploring
Randomized Trees (biRRT) as our motion planner (Kuffner
and LaValle 2000), and FastIK as our inverse kinematics
solver. We use 1000 planning episodes for training samplers
in the cupboard domain, and 1500 planning episodes for
training samplers in the box-moving domain. For training the
ranking function, we use 250 planning episodes. The number
of key configurations is 355 for the cupboard domain, and
618 for the box-moving domain.

Benchmark description

The claims in this paper are summarized as follows.

e Claim 1 (computational efficiency and robustness):
learning to guide planning is more computationally
efficient than pure planning and more robust than pure
learning.

* Claim 2 (data-efficiency): for learning from planning
experience, using pessimism against the actions
missing from data is more data efficient than
estimating the cost-to-go.

* Claim 3 (effective problem representation design): It is
more effective to use a relaxed problem representation
as an input to the search guidance predictors than the
full problem representation.

e Claim 4 (generalization capability of our representa-
tion): for the task-guidance, we can generalize across
different environments while for continuous parame-
ters we can generalize within an environment. For both
cases, they generalize to different goals; in particular,
we can train our predictors from easier instances of the
problem and generalize to more difficult problems that
involve longer planning horizon.

To support Claim 1 (computational efficiency and
robustness), we compare against the following benchmarks:

* RANK-WGANGP: A pure-learning method that uses
the abstract action that has the highest rank value
with respect to F' and the continuous parameters
predicted by a sampler learned using WGAN-GP
without planning. It resets to the initial state if it
samples an infeasible action.

* IRSC: Iterative Resolve Spatial Constraint. It is a
pure-planning algorithm. We extend RSC (Stilman
et al. 2007), which is the state-of-the-art algorithm
for manipulation among movable obstacles, to moving
multiple objects to a goal region. To do this, we first
plan pick-and- place motions for moving goal objects
to goal regions with checking collisions only at object
placements and initial and final robot configurations.
From this, we get an order to pack objects into the goal
regions. Each single-object packing sub-problem is
solved by an application of RSC. If, after some number
of iterations, RSC does not find a solution, we modify
the object ordering and try randomly permuting the
unplaced boxes. The algorithm will eventually try all
orderings if given enough time.
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* SAHS-HCOUNT: A pure-planning algorithm based
on SAHS that uses the hand-designed abstract-edge
heuristic function shown in Eqn (1) and a uniform
sampler for continuous parameters.

We compare these with our guided versions of SAHS:

* SAHS-RANK: uses the abstract-edge heuristic function
in Eqn. (2). F' is trained with our abstract problem
representation and the large-margin loss. Uses a
uniform sampler for continuous parameters.

* SAHS-RANK-WGANGP: same as SAHS-RANK but uses
a sampler trained using key-configuration problem
representation and WGAN-GP objective function.

To support Claim 2 (data-efficiency), we have the
following benchmarks that estimate the cost-to-go of a given
state-and-action instead of a pessimism based loss:

* SAHS-MSE: uses the abstract-edge heuristic function
in Eqn. (2). F' is trained with our abstract problem
representation but mean-squared-error loss with the
remaining number of steps to the goal as target values.
Uses a uniform sampler for continuous parameters.

* SAHS-RANK-ACTORCRITIC: same as SAHS-RANK but
uses a sampler trained with key-configuration problem
representation and a variant of DDPG (Lillicrap
et al. 2016). The critic is trained with the planning
experience dataset, with remaining number of steps
to the goal as target values. The sampler is trained by
optimizing this critic.

To support Claim 3 (effective problem representation
design), we compare against the following benchmarks that
use the full problem representation based on poses and
shapes of movable objects, instead of a relaxed problem
representation:

* SAHS-POSERANK: uses the abstract-edge heuristic
function Eqn. (2). F' is trained with the full problem
representation and large-margin loss. Uses a uniform
sampler for continuous parameters.

* SAHS-RANK-POSEWGANGP: same as SAHS-RANK
but uses a sampler trained with full problem
representation and WGAN-GP objective function.

Table 2 summarizes the various versions of guided SAHS.

To support Claim 4 (generalization capability of our
representation), we only collect planning experience from
the box-moving domain, where the goal is to move a
single box to the kitchen. Then, we test its performance
in two domains without retraining. First in the same box-
moving domain, but where the goal is changed to moving
four boxes to the kitchen, instead of one. This demonstrate
its capability to generalize to harder problems. Second in
the cupboard domain, where the goal is to move smaller
objects into a packing box using one-arm pick-and-place, to
demonstrate its capability to generalize across environments
with different geometric details.

To evaluate each of these algorithms, we measure different
quantities. For comparing pure planning and pure learning
methods with guided planners, we measure the planning
time to find a solution within a time limit. For comparing
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Figure 8. Box plots for planning times for (left) moving one box in the box-moving domain, (middle) for moving four boxes in the
same domain, and (right) for moving a target object in the cupboard domain. The box-moving domain had 2000 seconds time limit,
and the cupboard domain has 1000 seconds time limit. Boxes indicate 25th and 75th percentiles, and Whiskers indicate 10th and

90th percentiles.

Algorithm Success rate Success rate Algorithm Succ.ess rate
(1 box, 2000s) | (4 boxes, 2000s ) (1 obj, 1000s )
IRSC 0.53 0.51 IRSC 0.21
RANK-WGANGP 0.43 0.03 RANK-WGANGP 0.00
SAHS-HCOUNT 0.94 0.56 SAHS-HCOUNT 0.44
SAHS-RANK 0.94 0.96 SAHS-RANK 0.75
SAHS-RANK-WGANGP 0.99 0.97 SAHS-RANK-WGANGP 0.81

Table 1. Success rates of different algorithms in the box-moving domain with 2000s time limit (left) and cupboard domain 1000s

time limit (right)

Algorithms F loss F representation Sampler Sampler.
Loss representation
SAHS-HCOUNT - - - -
SAHS-RANK Large-margin Abstract - -
SAHS-RANK-WGANGP Large-margin Abstract WGAN-GP Key configurations
SAHS-MSE MSE Abstract - -
SAHS-RANK-ACTORCRITIC | Large-margin Abstract Variant of DDPG | Key configurations
SAHS-POSERANK Large-margin Full problem - -
SAHS-RANK-POSEWGANGP | Large-margin Abstract WGAN-GP Full problem

Table 2. Various versions of guided-SAHS. The ones marked with a dash do not use the learned sampler or F

different instantiations of SAHS that uses different abstract-
action heuristic function and continuous parameter samplers,
we measure the number of nodes to find a solution within a
limit on the total number of explored nodes. In both cases,
we measure the success rate defined by the percentage of
problem instances solved within the given resource limit.
To measure these quantities, we test the algorithms on 25
problem instances in each setup. For algorithms that involve
planning, we use 5 different planning seeds. For algorithms
that involve learning we additionally use 5 different training
seeds. The details of hyperparameters and training data used
for these benchmarks are described in the appendix.

Results

Claim 1 (computational efficiency and robustness)
Figure 8 (left) shows the planning time results for moving
a single box in the box-moving domain. We see that the
median of SAHS-RANK is about 3 times faster than that
of IRSC, and about 1.5 times faster than that of SAHS-
HCOUNT. Further, the median of SAHS-RANK-WGANGP is
6 times faster than IRSC, and 3 times faster than SAHS-
HCOUNT. The guidance-based approaches have much lower
90th percentiles as well, indicating that they are especially
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better for harder problem instances. IRSC performs badly
because it makes the monotonicity assumption, which states
that problems can be solved by touching each object only
once, and this does not hold in this problem. RANK-
WGANGP performs the worst among all the methods, due
to its inability to overcome prediction mistakes. This also is
evident in Table 1 (left, second column). While the guidance-
based approaches, including SAHS-HCOUNT which is guided
by a hand-designed function, solve more than 90% of
the problems, pure-learning (RANK-WGANGP) and pure-
planning (IRSC) solve only about half of the problems
compared to the guidance-based approaches.

Figure 8 (middle) shows the results for a harder problem
with longer horizon where the robot has to pack four boxes.
The median of SAHS-RANK-WGANGP is about 5.8 times
faster than those of SAHS-HCOUNT and IRSC, and SAHS-
RANK is about 3.5 times faster. The 90th percentile is again
significantly lower than the benchmarks. It is also worth
noting the significant drop in the success rate of the pure-
learning approach in Table 1 (left, third column). The main
reason is that, because this is a longer-horizon problem than
the one-box-moving scenario, there is more room for making
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Figure 9. Comparison of humber of nodes to find a solution by
various algorithms trained with different losses. The maximum
number of nodes is set to 100.

prediction mistakes. In terms of success rates, the guidance
based algorithms outperform the benchmarks.

Figure 8 (right) shows the results in another problem
for a cupboard domain where the robot has to rearrange
small objects inside a shelf and then pack a target object
to the green box. We again see that the guidance-based
approaches are superior to pure planning and pure learning
in terms of the median of planning times. IRSC especially
suffers in this domain because the environment is tighter
than the box-moving domain, making more instances of
non-monotonic problems. Similarly, the tightness in the
environment requires longer horizon plans, making RANK-
WGANGP to suffer. The success rates in Table 1 (right)
indicates that guidance-based algorithms, SAHS-RANK-
WGANGP and SAHS-RANK, significantly outperform the
benchmarks and improves the success rate by a factor of 1.8.

Claim 4 (generalization capability of our representation)
This claim is more precisely divided into three points:
(1) abstract state-and-goal representation can generalize
to different environments, (2) both abstract and key
configuration based representations can generalize from
easier problem instances to harder instances with longer
planning horizon and (3) both of them can generalize to
variations within an environment.

To evaluate the first point, consider Figure 8 (right),
which shows results for a cupboard domain by applying
the same ranking function that we learned from the box-
moving domain without retraining. As previously noted, we
see that the SAHS-RANK outperforms the benchmarks except
SAHS-RANK-WGANGP, without retraining, indicating it can
generalize to different environments.

To support the second point, consider Figure 8 (middle)
where we consider the box-moving domain with 4 goal-
boxes. Here, we apply the sampler and rank function that
we learned from problems with a single goal-box without
retraining. As we have noted, SAHS-RANK and SAHS-RANK-
WGANGP outperform the benchmarks without retraining,
indicating they can generalize to harder problems.

The third point is already demonstrated since each
problem is defined by different poses of objects within an
environment.

Claim 2 (data-efficiency) Figure 9 shows the results of
different losses for the single-goal-box problem in the box-
moving domain. By comparing SAHS-RANK and SAHS-MSE,
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Figure 10. Comparison of number of nodes to find a solution
by various algorithms trained with different representations. The
maximum number of nodes is set to 100.

we can see that even with the same number of training
data, we can solve problems twice as fast using ranking loss
instead of MSE — the median number of nodes are 58 and 31
respectively. This indicates that the ranking loss is more data
efficient than MSE, which does not penalize actions that are
missing in the training data. This claim is further supported in
Table 3, which shows that with the same amount of training
data and limit on the number of nodes, SAHS-RANK 36%
more problem instances than SAHS-MSE.

We see a more pronounced difference for sampler losses.
In Table 3, we see that SAHS-RANK-ACTORCRITIC could
not solve any of the problems compared to SAHS-RANK-
WGANGP, which solves 97% of the problems. This is
because unlike an RL setting, we have a fixed dataset and
the agent does not get to explore the environment by trying
different actions. As a result, the values of actions missing in
the data are extremely wrong, and sometimes are encouraged
by the learned sampler. Most of the time, SAHS-RANK-
ACTORCRITIC wastes its computations by trying infeasible
continuous parameters.

Claim 3 (effective problem representation design) Fig-
ure 10 shows the results of different representations for
the single-goal-box problem in the box-moving domain.
For the task-level guidance, with the same amount of data,
SAHS-POSERANK has 46 median number of explored nodes,
compared to 32 of SAHS-RANK; Table 3 shows that SAHS-
POSERANK solves only 63% of problem instances, while
SAHS-RANK solves 91% of them. This indicates by using the
relaxed abstract problem representation, we can solve more
problems faster than using the full problem representation,
even with the same number of training data and limit on the
number of explored nodes .

Similarly, we can see the effect of key configuration
based representation as well. SAHS-RANK-POSEWGANGP
has a median number of nodes of 100, while SAHS-RANK-
WGANGP has about 25; the success rate of SAHS-RANK-
POSEWGANGP, indicated in Table 3, is 50%, while for SAHS-
RANK-WGANGP, it is 97%.

Discussion

We presented a framework that integrates a novel planning
algorithm, SAHS, with learning algorithms for abstract
action ranking function and continuous parameter sampler.
While the planner itself is a generic search algorithm,
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Algorithm Success rate
SAHS-MSE 0.55
SAHS-RANK-ACTORCRITIC 0.00
SAHS-POSERANK 0.63
SAHS-RANK-POSEWGANGP 0.50
SAHS-RANK 091
SAHS-RANK-WGANGP 0.97

Table 3. Success rates of SAHS guided by learning algorithms
that use different losses and representations

our framework automatically learns domain-specific search
guidance knowledge by leveraging its planning experience.
We introduced our design principles for designing the
representation and loss function for training these search
guidance functions: relaxed problem representation and
pessimism against actions missing from data. We showed
that by using these principles, we can be more data and
computationally efficient and aggressively generalize to
harder problems and different environments. We also showed
that by learning to guide planning, we can be more robust
than pure-learning and more computationally efficient than
pure-planning.

There are many important aspects of G-TAMP we are not
addressing in this paper. First, we are not addressing the
substantial problem of planning and execution under sensor
uncertainty. We assume observable states and deterministic
transitions, mainly because the problem is already hard
enough even under these simplifying assumptions. To
lift these assumptions, we would have to model the
environment with a Partially Observable Markov Decision
Process (POMDP), and use belief-space TAMP algorithms
(Kaelbling and Lozano-Pérez 2013; Garrett et al. 2020). In
this setup, our design principles can still be applied but we
would need a strategy for computing the abstract and key-
configuration representations from a history of observations
and actions.

Another important aspect we are not considering is
optimality. We focused on satisficing problems, where the
goal is to find a feasible solution rather than an optimal
one. We believe if we are given a cost function, then we
can modify SAHS to optimize it by taking into account the
costs of the actions taken so far in addition to the heuristic
and rank functions. However, we did not try this because (1)
even the satisficing problem itself is hard enough for G-TAMP
problems, and (2) computing a reasonable objective function
is non-trivial. For example, a cost function that measures the
total energy required to move all the objects, or the plan
execution time, is difficult to compute.
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Appendix
Probabilistically complete version of SAHS

Algorithm 4 describes probabilistically complete version of
SAHS, PC-SAHS, which takes as inputs an initial state s, set
of goal states G, initial planning horizon L, hyperparameters
for sampling continuous parameters of operators Nf., Npyp,
and Ngmpi, and an abstract-edge heuristic function h(-,-). We
assume we use a probabilistically motion planner for each
operator.

Algorithm 4 PC-SAHS(s0, G, L, Ntc, Nympt; Nmp, h(-, -))

1: iter =0

2: while not budget_reached

3:  queue = PriorityQueue()

4 for6 e OM xR,ac A

5: queue.add((so, a(0)), h(a(s,G), a(d)))

6: end for

7 while not queue.empty

8 s, a(d) = queue.pop()

9 k = SMPLCONT(s, a(8), Ne X 2" Nymo1, Nimp)
10 if x is feasible

11 s =T(s,a(d,k))

12: s .plan = s.plan + a(, k)
13: ifs'eg

14: return s’.plan

15: end if

16: if s’.plan.length < L x 2iter
17: for’ c OM xR,ac A
18: queue.add((s',a(d")), h(a(s,G), a(d)))
19: end for

20: end if

21: end if

22:  end while
23:  iter =ter + 1
24: end while

The algorithm proceeds similarly to SAHS, but the crucial
difference is in line 17 and line 10. What line 17 effectively
does is considering all abstract actions sequence of length
L x 2@ at each iteration. For each iteration, we can use at
most N, X 2%" number of samples for motion planning,
which is enforced by line 10.

We have the following theorem for PC-SAHS.

Theorem 1. Assume that the motion planner associated
with each operator is probabilistically complete. Then, PC-
SAHS is probabilistically complete.

To prove this, first define B, (k) as a ball with radius
centered at . We make the following assumptions:
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A 1.  There exists some feasible plan
[a(0],k}),a(03,K3),...,a(d;, k)] and some € >0 such
that for any K1 € Be(KY}),K2 € Be(K3), ..., K € Be(k}),
[a(d7, K1), a(d5, Ka), . . ., a(d5, Ki)] is also a feasible plan,

and for each operator a(0},K;) within such a plan, there
exists an inverse kinematics solution and motion plan that
has at least € clearance from every obstacle.

A 2. The underlying feasibility checker (i.e. the IK solver
and motion planner) is probabilistically complete, given the
above assumption.

Lemma 2. For some constant c, the probability that we find a
solution approaches 1 as the number of outer-loop iterations
where L x 2" > ¢ and Ny X 2ter > ¢ approaches co.

Proof. We define an attempt for a plan skeleton
{61,02,...,0;} as a sequence of calls to SMPLCONT
for each §;, with each call starting from the state resulting
from the previous call, and terminating if any such call
fails. An attempt can occur asynchronously (ie other calls
to SMPLCONT can take place between the ones that make
up any given attempt), and its calls to SMPLCONT can
overlap with attempts for other plan skeletons. Then each
outer-loop iteration attempts every plan skeleton of length
at most L x 2" Therefore, the number of times any plan
skeleton of any finite length is attempted approaches oo as
the number of outer-loop iterations where L X giter >
approaches oco. In particular, there exists a plan skeleton that
feasibly reaches the goal that is attempted arbitrarily many
times.

Consider a single attempt for this plan skeleton. Given
that it is feasible, then there exists some constant ¢ such
that a single call to SMPLCONT succeeds with some
positive finite probability when Ng. X giter > by our
assumption that the motion planner is probabilistically
complete. Then each attempt also succeeds with some
positive finite probability since it is the conjunction of the
individual calls to SMPLCONT. Since each attempt is an
independent event, then the probability that at least 1 attempt
suceeds approaches 1 as the number of attempts approaches
00.

Lemma 3. For any constant c, the number of outer-
loop iterations where L x 2" > ¢ approaches oo as time
approaches .

Proof. Suppose it is not. Then because each iteration
increases L, this means that there is some iteration that
does not end in finite time, and so it is stuck in the inner
loop forever. Each iteration of the inner loop ends in finite
time for a given Nyp, and Ny, so this implies there are
an infinite number of iterations in the inner loop. However,
each iteration of the inner loop can be mapped to a distinct
plan skeleton of length at most L x 2%¢", of which there are
finitely many for a given value of L and ¢ter. Therefore, there
are a finite number of inner-loop iterations, and so we have a
contradiction.

Probabilistic completeness follows as a corollary of these
two lemmas.
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Caching the state computation

Although the techniques described here are tied to our
specific implementation, the approach is quite general.

Probabilistic Roadmap for predicate computation To eval-
uate the predicates PREFREE, MANIPFREE, OCCLUDE-
SPRE, and OCCLUDESMANIP, we use random sampling to
sample continuous actions for each object and region and call
a motion planner. In our environment, the fixed obstacles
remain constant across all problem instances, as only the
movable objects have varying initial poses. Therefore, we
pre-compute a finely-sampled probabilistic roadmap (PRM)
that ignores movable objects but respects fixed objects. Later,
when doing the graph search for a path, we check for
collisions for motions on the edges of the PRM against only
the movable objects but not the fixed obstacles in the state.
This leads to more efficient and less variable motion planning
calls.

Cached collisions and paths In a single state we make
many motion planning calls. Performing collision checks
between movable objects and robot configurations for each
motion planning call can be quite expensive. So we cache
which configurations in the PRM collide with each object
in the current state, then reuse that information in future
graph searches as long as that object is not moved. We
also retain collision-free paths that are reused in multiple
predicate evaluations.

Inverse Kinematics Solutions Unlike in the box-moving
domain, in which collisions mostly constrain the space of
feasible trajectories of the robot base, collisions in the
cupboard domain heavily constrain the space of feasible arm
configurations instead. Therefore, many inverse kinematic
solutions are in collision, and so we must sample many
configurations in order to find a feasible operator instance.
Because inverse kinematic solving is a relatively expensive
operation, this severely impacts the efficiency of planning
and evaluating predicates. The workaround we use is to pre-
compute a large number of inverse kinematic solutions for
objects at a wide variety of poses relative to the robot base.
Then when computing the geometric predicates at planning
time we adapt the cached configuration by using relative
transformations to make it fit with the actual object pose
(for a pick operation) or the desired object placement (for
a place operation). Many of these cached solutions will
still be in collision, but avoiding the cost of finding the
kinematic solution leads to significant speedups. We still
call the inverse kinematics solver when sampling continuous
parameters after selecting an abstract action to attempt.

Predicate Evaluations Finally, when an action is applied
to a state, resulting in a new state, a lot of information
can be passed down to improve the efficiency of evaluating
the predicates for the new state. First, for any given action,
many predicates will not change because moving a single
object will leave most relationships between other objects the
same, so we reuse the predicate value without recomputing it.
Additionally, the set of PRM configurations in collision with
each object only changes for the object that was moved, and
so all other sets of collisions can be reused. In both domains,
inverse kinematics solutions that are known to not collide
with fixed objects can be retained for all objects except for
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the one that was moved. These configurations might still
collide with movable objects, though.

Computations inside our rank function graph
neural network

We now describe in detail the computations inside our
graph neural network. For each operator a, such as
PICKANDPLACE, we define a GNN F, (a(s,G),0) that
ranks discrete parameter choices for all § € OM) x R.
Each GNN takes the graph input such as the one in Figure 6
as an input, and outputs a |O™)| by |R/| matrix where each
value in the matrix indicates the rank value of moving an
object to a region.

Because the arguments of our edge function Edge(-, -, -)
are ordered, we call the entity in the first argument as a
sender, and the one in the second argument as a receiver. We
found that we achieve better performance if we use a separate
embedding functions for the sender and a receiver. We first
embed the values at the object nodes as
no

§)) = f(Node(0:),01) and v{) = f(Node(0;).02) ,

for all o;,0; € OM), where the superscript denotes the

round of message passing, u denotes the embedding of the

sender o;, and v denotes the embedding of the receiver o;.
At each edge, we compute an edge embedding with

= f(Edge(oi,05,7%);63) .

Cojo;ry

We compute the message from o; to o; for the component
associated region 1y, Mo0;r,, by using these sender,
receiver, and edge embeddings,

olojn = f(

We use the standard averaging-aggregation function to
aggregate messages. However, one key distinction is that
although we do not have an edge between components,
we aggregate messages across components, because the
occlusion information in both regions are necessary to
predict the rank value of moving an object to a region. So
we aggregate by

Cm 0Tk 04)

1
o - =
Mo = JoD[ £ [R]

E : OZOJT]C"

0;,Tk

We perform one more round of message passing. The values
at nodes are computed again using f(+;01) and f(-;62) as

ul) = f(m{P:61) and ol = f(m{;05) .

The new messages are computed with the updated node
values and the edge embedding

mf!) f(uglrk, 012“;97601‘,0_7‘7%794) .

040,Tk
We then aggregate the messages using averaging, only with
respect to objects this time, to have distinct values for
different regions for (o, r) pairs:

|O(M)| Z ooJr;C

()

0Tk
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Finally, we compute the rank value of moving o; to region
7 in an abstract state «(s, G) as a matrix with size |O™)| x
|R|, where each entry is

ﬁu(a(s,g), (0,71);0) = f(m(oi),rk?ei’?) :
where 0 = {61,605, 05,04,05}

Cleaning the training dataset

Since our planning algorithm uses sampling to handle
continuous parameters, the continuous parameter data tends
to noisy. For example, we often get sub-optimal state-
continuous-parameter pairs, where the robot places an object
at a superfluous pose only to move it again later. If we use
this dataset directly, then we would end up with a sampler
that is very similar to a uniform sampler, because there is not
enough regularity between states and parameters.

To deal with this problem, we use a strategy for cleaning
the dataset such that each parameter is a progress towards a
goal. The idea is to check whether the object that we move
at each step decreases the number of objects in collision
with Vpre or Vinanip for goal objects into their associated goal
regions.

To build such dataset, we first consider a tuple
(8¢, 04, Kt, St4+1) from Dy, where o; is the object that the
robot moves at time step ¢, «; is the continuous parameter
that moves o;, and s, is the resulting next state. We wish
to determine whether to include «; into our training data D g
or not.

To do this, we first look at, for each o, € G, the number
of times oy is in collision with Vpre(og) at s;. Then, for each
(0g4,74) € G, we look at the number of times oy is in collision
with Vinanip(0g, 7). We count the number of collisions, and
denote it as m;. We repeat these steps in state s;y1, and
compute my1. We include x; in D only if myy; —my >
0.

Intuitively, this method makes sure that each parameter we
include in our data moves an object out of swept volumes that
needs to be cleared to achieve a goal. This creates a regularity
between a state and parameter especially because ¢(s)
encodes Vipanips for all the goal object and goal region pairs.
Note, however, that in very tight environments where we
need to first place objects into these essential swept volumes,
this method will discard data rather too aggressively.

Hyperparameters and training data description

For the parameters of SAHS, we use N, = 2000, N,y =
5 in the box-moving domain, and N, = 50 for the shelf
domain. The priority function in 2 uses A = 1. For training
the sampler, we use ng,; = 100000, n. = 5,ny = 32,lrg =
le —4,lr, = le — 4, and use N'(0, 1) for Py.

We train separate samplers for pick parameters and place
parameters, and feed the predicted pick parameters to the
place parameter sampler. We also train separate samplers
for different regions. We use 1000 planning episodes for
training samplers in the cupboard domain, and 1500 planning
episodes for training samplers in the box-moving domain.
For training the ranking function, we use 250 planning
episodes.

To generate our training data, we first solve problems
using IRSC and use the planning experience to train our
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ranking function. Then, we use SAHS-RANK to solve
additional problems and use this planning experience to train
our sampler. To build the set of key configurations, we use
the motion plans from IRSC planning experience, and then
sparsely sub-sample them by discarding the ones that are too
close.

The learned samplers, which operates on lower geometric
details, however, must be trained in each environment. For
this reason, its planning experience data consists of a mixture
of moving 1 and 4 boxes into the kitchen in the box-moving
domain, and packing 1 object in the cupboard domain. We
train separate samplers for these environments.



