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Abstract. Minimum Risk Motion Planning (MRMP) has been shown to remain
NP-Hard even under the conditions that lead to the practical efficiency of sampling-
based and grid-based motion planning algorithms [25]. However, the hardness
proof does not eliminate the importance of finding a practical solution to this
problem. In this paper we identify a parameter which directly controls the hardness
of MRMP. We present experiments that suggest this parameter is small for many
practical MRMPs and present an algorithm guaranteed to efficiently yield high-
quality solutions whenever this parameter is small. When the parameter is large, the
algorithm fails gracefully—it returns a solution with bounded suboptimality. We
also explore a connection between our work and previous work on the minimum
constraint removal problem (MCR).

Keywords: motion and path planning, probabilistic reasoning, completeness and
complexity, collision avoidance

1 Introduction
Planning in an uncertain environment is one of the fundamental problems facing au-
tonomous systems. Drones and autonomous cars, for example, must all navigate environ-
ments that are not known a priori. Even after they are able to observe the environment,
observations are often noisy and incomplete. Unfortunately, motion planning in this
context is especially difficult when one wants to guarantee a low collision probability.
One must reconstruct a model of the environment from sensor observations, quantify
uncertainty in this estimation process, and then compute a path that ensures a low colli-
sion probability. For the rest of the paper, the term safe is used to refer to a trajectory
with low collision probability over the randomness of the uncertain environment. Then
the goal of Minimum Risk Motion Planning (MRMP) is to find such a safe trajectory.
Note that this differs from many other works in planning under uncertainty which focus
on uncertainty in estimation of the robot position, orientation, or ability to execute a
trajectory precisely.

In this paper we build on previous work characterizing collision probabilities and
focus on developing methods for computing safe trajectories. Unfortunately, since many
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instances of this problem are NP hard, we cannot hope to find a provably efficient
algorithm that works in general. Instead we identify a parameter that controls long
range correlations between collision probabilities, and in turn, the hardness of the
planning problem. When this parameter is a small constant, we demonstrate a provably
efficient, optimal, algorithm with rigorous guarantees. Fortunately, this parameter seems
to be small for many practical instances. When the parameter cannot be controlled, we
demonstrate a tradeoff between computation time and the suboptimality of the result.
The key contributions of this paper are twofold:

1. Defining a parameter that controls the hardness of MRMP and allows us to identify
solvable MRMP problems. We demonstrate experimentally that this parameter is
small for certain problems of interest.

2. Describing an algorithm that efficiently solves MRMP when the parameter is small.
When the parameter is large, the algorithm allows trading off runtime and optimality.

In particular, this represents a different paradigm of working with computational
complexity in robotics. Many works in robotics can be divided into two categories based
on the hardness of the problem they are trying to solve: (a) the problem is efficiently
(polynomial-time) solvable and the work presents an algorithm that guarantees an
efficient runtime and optimal solution (b) the problem is provably computationally
difficult so the work presents an algorithm that depends on heuristics and may only
sometimes be efficient and/or produce an optimal solution. This paper takes a more
fine grained approach. By identifying a parameter that quantifies how hard a problem
instance is, we can understand the exact tradeoff between runtime and solution quality.
As a result, we are able to present an algorithm with strong theoretical guarantees that
are, as demonstrated in the experimental section, also practical and efficient at solving
instances which could not be solved by prior approaches.

1.1 Approximations in Planning with Environment Uncertainty

The hardness of planning with environmental uncertainty has led to various approxima-
tions to make the problem more computationally feasible. One line of work models this
uncertainty as a partially observable Markov decision problem (POMDP) [5]. Unfortu-
nately, solving POMDPs is PSPACE-hard, implying that an efficient, general algorithm
does not exist [18]. Furthermore, even solving POMDPs in practice has proven difficult
for complicated problems, despite advances in approximate POMDP solvers [15, 26].

However, there are many works that suggest that navigation among uncertain obsta-
cles is an easier problem than solving general POMDPs. There is a long line of work that
approaches this problem, trading off performance, safety guarantees, completeness, and
limitations of the model [4, 11, 17, 10, 27, 19, 20, 6, 8]. One way to avoid making these
tradeoffs is to find a restricted setting where the problem is easier to solve. Unfortunately,
positive results in this area are sparse. Consider the following two negative results for
context. The first is that planning on a graph with uncertain obstacles remains hard, even
in two dimensions and even if obstacles are guaranteed to not overlap with more than a
fixed number of other obstacles [25]. The second concerns the related minimum con-
straint removal problem. Finding the minimal set of obstacles to remove to make travel
between two points feasible remains NP-hard even if (a) the obstacles are constrained to
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be axis-aligned rectangles or (b) obstacles are line segments such that no three intersect
at one point [7]. In contrast to this prior work, this paper will present conditions under
which the problem is efficiently solvable.

Fig. 1. Estimating the risk by
summing the risk of individ-
ual waypoints can overesti-
mate the risk since the colli-
sion probability of adjacent
waypoints is often correlated
in practice. In the above car-
toon, we can see that if a draw
contains one waypoint, it is
likely to contain many. Even
though the collision risk of
the trajectory is 20%, the sum
of the risks of the waypoints
is greater than 100%.

In this paper, we focus on navigation among uncertain
obstacles drawn from known distributions. In the scenario
we examine, the robot first fixes a trajectory based on a
known obstacle distribution. Then obstacles are drawn ex-
actly once from the distribution and the robot executes the
plan. The risk of the plan is defined as the probability that
the trajectory collides with an obstacle. Ideally, an algo-
rithm would always efficiently find the least-risk solution
and never return a solution that is less safe than advertised.

There are several straightforward approaches to this
problem, that while efficient, do not necessarily yield so-
lutions that meet practical needs. The first would be to
penalize each waypoint along a discretized path with its
[unconditional] likelihood of collision. This approach cor-
responds to the assumption that collision probabilities at
different waypoints are independent. The sum of the in-
dividual risks can be taken as a proxy for the total risk.
Unfortunately, this has several undesirable properties. It is
sensitive to the coarseness of the waypoint discretization.
Taking a trajectory and discretizing more finely increases
the computed risk bound even though the real risk does not
change. At one extreme, using this calculation would show
that a robot that does not change position is certain to collide! In reality, one expects
collision probabilities at different points of a trajectory to potentially have significant
correlations, making a union bound a poor strategy by which to bound the collision
probability. This issue is illustrated in Figure 1.

This dependence on the discretization can be remedied by using the concept of a
shadow. For every obstacle, a “shadow” (depicted in Figure 2) is a volume that contains
the obstacle with a fixed probability. As long as the robot follows a trajectory that
avoids the shadows, the risk of the trajectory is at most the sum of the probabilities
that each shadow contains its obstacle. If one can decide the probabilities correspond-
ing to each shadow ahead of time, MRMP becomes identical to a standard motion
planning problem. Shadows effectively capture the notion that collision probabilities
are strongly correlated between points that are close together. Unfortunately, choosing
these probabilities a priori is crucial for the reduction to the standard motion planning
problem. If it is not known a priori which obstacles the optimal trajectory must pass
near, the shadows must be chosen conservatively in a way that can have many unde-
sired consequences. For example, even obstacles far away from the final trajectory
which do not have a sizeable effect on the true collision probability may end up affect-
ing the choice of trajectory and computed risk bound. The incompleteness resulting
from allowing equal risk for every obstacle is illustrated in Figure 3. Unfortunately,
planning without fixed shadows is harder than deterministic motion planning, even
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when allowing for certain approximations. Even when the obstacles are polytopes com-
posed of Gaussian-distributed faces (defined in [3]), with paths restricted to a small
graph and with a point robot in a low dimensional space, the problem is NP-hard [25].

Fig. 2. When the true posi-
tion of the blue square is un-
known, we can identify the
orange “shadow” as a region
that contains the blue square
with some probability [3].

In this work we identify a parameter that determines the
hardness of such problems. When this parameter is small,
we compute an optimal solution efficiently. We believe this
parameter is small for most practical instances of planning
among uncertain obstacles.

1.2 Related Work

Since planning under uncertainty is both ubiquitous and
provably hard, many works rely on heuristics, rarely provid-
ing formal guarantees for both solution quality and runtime.

One line of work focuses on uncertainty in the robot’s
position. Here the model of the robot itself is “inflated”
before the collision checking, ensuring that any slight inac-
curacy in the position estimate or tracking of the trajectory
does not result in a collision. Work that focuses on uncertainty in the environment
sometimes does the mirror image. They often inflate the occupied volume of the obstacle
with a “shadow” and ensure that any planned trajectory avoids the shadow [1, 11, 17].
Both of these approaches work well when the obstacles are spaced out because there is
still room to pass between them, but they become incomplete in more crowded domains
when a trajectory must reason about which objects force the robot to incur more risk.
The planner does not know beforehand how much it can expand each shadow while still
allowing a feasible trajectory.

Fig. 3. Planning a safe trajectory re-
quires deciding how to balance the risk
among possible obstacles. In the first im-
age, the robot is allowed to incur equal
risk of colliding with each obstacle and
no path between the diamond and the
star exists. In the second, the robot is
allowed more risk of colliding with the
upper obstacle and less for the lower
one, creating a passage for the robot.

A more general approach that handles either
or both of localization and obstacle uncertainty is
belief-space planning. Belief space is the set of
all possible beliefs about or probability distribu-
tions over the current state. Belief-space planning
converts the uncertain domain in state space to
belief space, then plans in belief space using trees
[22, 4] or control systems [21]. However, the di-
mensionality of the belief space can become quite
large in domains with many uncertain variables
such as obstacles.

Another line of work uses synthesis tech-
niques to construct trajectories that are safe by
construction. If the system is modeled as a Markov
decision process with discrete states, a safe plan
can be found using techniques from formal verifi-

cation [6, 8]. Other authors have used techniques from Signal Temporal Logic combined
with an explicitly modeled uncertainty to generate plans that are safe [24], though the ϵ
in said paper does not correspond to the notion of safety used in this paper.
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Recent work by Hauser [9] applies an approximate minimum constraint removal
algorithm to motion planning under obstacle uncertainty by randomly sampling many
draws for each obstacle and finding the path that intersects with the fewest samples. With
this approach, he demonstrates low runtime and suboptimality on average although with
poor worst case performance. He notes that his greedy minimum constraint removal
algorithm is optimal when the optimal plan does not require entering an obstacle multiple
times, and similarly his solution for motion planning under uncertainty is optimal when
it is not required to risk collision with an obstacle multiple times.

Building on previous works using “shadows”, Axelrod, Kaelbling, and Lozano-
Pérez [3] formalized the notion of a shadow in a way that allowed the construction
of an efficient algorithm to bound the probability that a trajectory will collide with
the estimated obstacles. However, the proposed RRT-based planning method making
use of this algorithm does not return a solution with probability approaching 1 as the
number of iterations approaches infinity (i.e. it lacks probablistic completeness). This
is because this problem lacks optimal substructure: subpaths of an optimal path are not
necessarily optimal, since the collision risk at different points along a trajectory can be
highly correlated if it passes near the same obstacle multiple times.

Shimanuki and Axelrod [25] show that planning in this domain is NP-hard in fixed
dimension, and that even the problem of searching a graph for a safe path is NP-hard.
The reduction they construct forces the planner to solve MAXQHORNSAT by encoding
variable assignment and clause satisfaction into collision risks for the different obstacles,
taking advantage of the fact that collisions can be correlated even between distant
portions of a trajectory. Hence, this suggests that the hardness of the problem stems from
long-distance dependencies between potential collisions.

1.3 Summary of Formal and Experimental Results

As mentioned in section 1.2, planning under obstacle uncertainty is hard because the risk
of collision at potentially distant segments of a trajectory can be correlated. However, in
many domains, these correlated risks tend to be somewhat localized to nearby portions
of the trajectory. In this paper we identify a parameter that controls this, the collision
horizon. It functions as a measure of how far apart these correlated collisions are in terms
of the number of obstacle shadows entered in between them. Intuitively, the collision
horizon captures the number of obstacles that are interacting with each other in such
a way that a planner must reason about their collision risks jointly; or alternatively,
how much collision history is needed to define a Markov state, that is, one that fully
determines the marginal risk at future states.

We present a parameterized polynomial-time algorithm Mh, for finding the min-
inum risk path in a graph, for which the following informal theorems hold (the formal
statements are presented later in the paper):

Theorem 1. On problems with collision horizon at most h, Mh returns the minimal
collision risk plan.

Theorem 2. On problems with collision horizon h′, where h′ > h, Mh produces a
solution that is suboptimal at most by the risk incurred by correlated collisions in the
optimal trajectory that are separated by more than h other collisions.
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We also show that minimum constraint removal, the problem of finding trajectories
with the fewest collisions, is also solved by our algorithm with the same guarantees.

Theorem 3. The greedy and exact algorithms presented by Hauser [9] are equivalent
to M0 and M∞, respectively, applied to MCR.

Hence, Mh can be seen as interpolating between the greedy and exact algorithms on
MCR problems (but not on minimum-risk planning).

These definitions and theorems are stated formally in sections 2.2 and 3.
We demonstrate Mh on a manipulation domain and an autonomous driving domain.

We find that M0 is near-optimal and that M1 is optimal on all problem instances,
indicating that the collision horizon tends to be small in these domains. We find similarly
on an MCR manipulation domain.

2 Definitions

2.1 Formal Problem Definition

Random Obstacle Model Up until this point, we have been talking about uncertain
obstacles in general. In this section, we define the abstraction we use to work with
uncertain obstacles. Note that we are not working with uncertainty in the robot pose,
only in the environment. Further, we will be restricting our discussion to methods that
first construct a graph embedded in configuration space, such as a PRM [14] or RRG [12],
then search the graph for safe plans.

A useful reference here are the shadows defined by Axelrod et al. [3]. The paper
defined shadows controlled by a single parameter (the probability that the shadow
contains the obstacle). Shadows more likely to contain the obstacle strictly contain
shadows less likely to contain the obstacle. The algorithm in this paper works with the
monotone risk model, which includes the shadows used in [3]. Under this model, every
node in the planning graph is assigned a risk for each obstacle. For a given path and
particular obstacle, the risk of any node colliding with the obstacle is bounded by a
weakly monotone submodular function over the nodes in the path. When using shadows,
this function becomes simply the maximum over the risks for each individual node being
in collision with that obstacle. Note that it does not matter if risks are associated with
nodes or edges since a graph with risks at edges may be transformed to one with risks at
nodes by constructing a node for every edge.

Definition 1 (Monotone Risk Model). Given a graph G = (V,E) (with edges E and
vertices V ), a function f : P(E) → L (with P denoting the power set, and L ⊂ R is a
finite set over which the risk is discretized) is a Monotone Risk Model if f is a weakly
monotone submodular set function or f is a weakly monotone accumulation of Monotone
Risk Models, i.e. f(E′) = g(f1(E

′), f2(E
′)), where f1, f2 are Monotone Risk Models

and g is weakly monotone, that is, g(w, x) ≥ g(y, z) if w ≥ y and x ≥ z. Typically,
each fi(E

′) would represent the risk that a given path, represented as a set of edges
E′ ⊆ E, is in collision with obstacle i. Then the overall risk of the path can be obtained
by combining the risk for each obstacle in some monotonic manner.
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A natural monotone accumulation would be the OR operation, treating the inputs as
collision probabilities for independent events (i.e. g(x, y) = x+y−xy). In practice —and
in our experiments —a union-bound accumulation, that is, summation over probabilities
(g(x, y) = x+ y), is often preferred for its simplicity. We note that our theorems and
algorithms apply to both of these, as well as any other monotone accumulation model.
Henceforth we let R[x ∪ y] denote this accumulation over the risks of events x and y.

Furthermore, the discrete minimum constraint removal problem (MCR), can also be
expressed as a minimization of a monotone risk model. Each obstacle i corresponds to
a monotone risk model fi such that fi(E′) = 1 if any edge e ∈ E′ is in collision with
obstacle i, and fi(E

′) = 0 otherwise. Then the sum of the risk models for all obstacles,
which corresponds exactly to the cost function defined in the MCR problem, is also a
monotone risk model.

In the deterministic case, an obstacle is typically a set of points in task space that
the robot would like to avoid. A useful abstraction is to define for each obstacle a
mapping from robot trajectories to 1 or 0, indicating whether the swept volume of a
robot executing that trajectory collides with the obstacle or not. We extend this notion to
the uncertain case, defining a random obstacle and then constructing a mapping instead
from robot trajectories to collision probabilities.

Definition 2 (Obstacle). An obstacle is defined as a random volume in task space
(usually R3) drawn from a known distribution. We note that an obstacle also corresponds
to a random volume in configuration space (all configurations that result in the robot
colliding with the obstacle). Each obstacle o is associated with a mapping fo : P(E) →
[0,∞), where fo is a Monotone Risk Model denoting the risk of a path colliding with
obstacle o.

There are many ways to describe the risk of collision with a given obstacle as a
weakly monotone submodular set function over edges, but just as an example, under the
model presented in [3], the risk for a given edge corresponds to the risk of the minimal
shadow that intersects with the edge. Then the risk of an entire path, or the risk of the
minimal shadow that intersects with the path, is equal to the maximum over the risks for
the individual edges. In this paper, we will be working with a discrete set of shadows for
each obstacle. Then we define a risk level as the risk associated with a particular shadow.

Definition 3 (Risk Level). A risk level lio is the probability that obstacle o is not fully
contained within its i’th shadow.

Informally, the shadows for a set of risk levels can be thought of as regions enclosed
by contour lines encircling an obstacle, with higher risk levels associated with smaller
shadows of higher risk. We note this model is not limited to the shadows constructed
in [3]. For example, it applies to shadows computed for different distributions using a
similar technique.

It is convenient to work with trajectories as swept volumes in task space (i.e. the space
that a robot moves through when following a trajectory). For a given set of distributions
over obstacles, the risk of a trajectory is the probability that the trajectory intersects any
obstacle. We frequently abuse notation, representing trajectories either in configuration
space, task space, or nodes and edges in a graph. We now define an ϵ−safe trajectory.



8 Brian Axelrod and Luke Shimanuki

Definition 4 (ϵ-safe trajectory). Given a joint distribution over random obstacles O, a
trajectory τ is ϵ-safe if, for any sample s1..sn ∼ O, R[τ ∩ si ̸= ∅ ∀ i] ≤ ϵ. That is, a
trajectory is ϵ-safe if the probability that it collides with any obstacle is less than ϵ.

Note that for obstacles o1...on, the probability of collision is bounded by the sum of
the individual collision probabilities. Thus if

∑
foi(τ) ≤ ϵ, τ is ϵ− safe. This allows us

to quantify the safety of a trajectory by using a monotone risk model.

Algorithmic Question This leads to the following algorithmic question, of finding safe
plans for a known distribution of obstacles.

Problem 1 (ϵ-safe Planning Problem) Given the obstacle distributions O and
initial and end points s, t in configuration space, find an ϵ-safe trajectory from s to
t if one exists, otherwise FAIL.

While the problem is known in general to be intractable [25], and risk-constrained
extensions to practical sampling-based motion planning algorithms that build up a tree
lack probabilistic completeness [3], Axelrod [2] proposed a risk-constrained extension
to the RRG algorithm [12] which is probabilistically complete. Unfortunately, that
algorithm requires executing a risk-constrained graph search, which is also known
to be intractable if completeness is required [25]. (The conditions and guarantees for
probabilistic completeness of the algorithm presented in this paper are discussed in detail
in Appendix C). Nevertheless, we would still like to find a practical algorithm that can
solve this problem.
Definition 5 (minimum-risk graph-search algorithm). A minimum-risk graph-search
algorithm is a procedure ϕ(G,O, s, t), where G is a graph, O is a set of obstacles, and
s and t are the start and end nodes in G, respectively. It returns an ϵ∗-safe trajectory in
G, where ϵ∗ is the minimum ϵ for which an ϵ-safe δ-inflated trajectory exists.

The δ-inflation condition informally means that there must be a nonzero probability of
eventually sampling a satisfying trajectory, and is more formally discussed in Appendix
C. We note that an algorithm optimizing risk can be directly used in place of an algorithm
satisfying bounded risk. Simply run the risk-minimizing algorithm and do not return the
solution if the risk is too high.

2.2 Formal Definition of Collision Horizon

Because the minimum-risk graph-search problem is intractable, we would now like to
define a parameterized version of the problem that is tractable when the parameter is
fixed. We identify a parameter that drives the hardness of the minimum-risk graph-search
problem. More specifically, we define the collision horizon which, loosely speaking,
captures the length of dependencies between obstacles.

We first define the collision coverage, illustrated in Figure 4, which describes the
distance between correlated collisions for a single obstacle.

Definition 6 (collision coverage). The collision coverage H
(τ)
o for a given trajectory τ

and obstacle o ∈ O in minimum-risk graph-search problem instance (G,O, s, t) is the



Efficient Motion Planning under Obstacle Uncertainty with Local Dependencies 9

number of obstacles (including o itself) for which τ enters a higher-risk shadow between
the first time it enters a given shadow of o and the last time. More formally, treating τ as
a sequence of edges, let ζ(τ)o′ denote the set of indices t for edges for which τ(t) enters a
higher-risk shadow of obstacle o′, i.e. ζ(τ)o′ = {t | fo′(τ(t)) > fo′(τ(t− 1))}. Then

H(τ)
o =

∑
o′∈O

1(∃t ∈ ζ
(τ)
o′ s.t. min ζ(τ)o ≤ t ≤ max ζ(τ)o ).

This leads us to define the collision horizon for the overall problem instance.

Definition 7 (collision horizon). The collision horizon h of a given minimum-risk
graph-search problem instance (G,O, s, t) is the maximum collision coverage of any
obstacle of a minimum-risk trajectory, or more formally, h = minτ∈T∗ maxo∈O H

(τ)
o ,

where T∗ is the set of minimal-risk trajectories from s to t.

Definition 8 (h-horizon minimum-risk graph-search algorithm). A h-horizon minimum-
risk graph-search algorithm is a procedure ϕ(G,O, s, t), where G is a graph, O is a
set of obstacles, and s and t are the start and end nodes in G, respectively. When the
collision horizon of the problem is at most h, it returns an ϵ∗-safe trajectory in G, where
ϵ∗ is the minimum ϵ for which an ϵ-safe δ-inflated trajectory exists.

Fig. 4. In the upper half of the
figure the path does not return
to any obstacles and has a colli-
sion coverage of 0. The second
path re-enters the first obstacle
after going through the second,
leading to a coverage of 2.

We will now present such an algorithm.

3 Algorithm

In this section, we present a polynomial-time h-horizon
minimum-risk graph-search algorithm. The algorithm is
based on Dijkstra’s algorithm minimizing the collision
risk, but instead of nodes corresponding to robot config-
urations, nodes correspond to a robot configuration and
a risk-level memory limited to h obstacles. The other dif-
ferentiator between our algorithm and a standard graph
search is an update rule that takes advantage of the struc-
ture of shadows to expand multiple nodes simultaneously.

Recall that shadows are split up into risk levels. Once the robot enters a higher
risk-level shadow for a particular obstacle, it does not incur any additional risk for time
spent in lower risk-level shadows for that same obstacle. The risk memory keeps track of
the maximum risk-level shadow entered for each of some number of obstacles. Then we
define a state as a pair (u, C), where u is a robot configuration and C is a risk memory
with |C| ≤ h. Suppose edge (u,v) in the original graph enters some set C ′ of shadows.
Then the augmented graph will have a corresponding set of edges ((u, C), (v, C ′′)) for
each C of size at most h, and for each C ′′ that can be obtained from C by adding (i.e.
memorizing) the additional shadows in C ′ then removing (i.e. forgetting) some number
of remembered shadows such that the resulting |C ′′| ≤ h. Each of these edges would
have a cost equal to the marginal risk of entering the shadows in C ′ conditioned on
having already entered the shadows in C. This allows the cost function to only increase
when the search enters a higher risk-level shadow than those recently visited.
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We note that standard Dijkstra’s algorithm with this graph augmentation on its own
would be sufficient for our theoretical results below to hold, but the large branching factor
stemming from the choice of which collision to forget causes a substantial, albeit still
polynomial, increase in runtime. Instead, we introduce an optimization via an extension
to the expansion rule that takes advantage of the structure imposed by shadows. In order
to define the expansion rule we use the term “open” to refer to a node which is in the
queue to be expanded, and “closed” to refer to nodes which have already been expanded.
While the search must retain multiple paths to each robot configuration, potentially with
different risks, not all paths are useful. Consider the situation where we already have
a path to configuration u with computed risk 0.5 with a 0.2 risk shadow for obstacle
one and 0.2 risk for obstacle two. The next node to be expanded reaches the same
configuration with computed risk 0.5 with a 0.1 risk for obstacle one and a 0.1 risk for
obstacle two. The computed risk for any path going through this new node is either
worse or unchanged relative to if it had instead went through the first node, since any
future marginal cost would be at least as high for the new node as for the first one. Then
even though the new node technically has a different state, we don’t have to expand it
since it will not lead to any paths that are better than those that go through the first node.

We formally encode this idea by defining a partial ordering between risk memories
such that C ≤ C ′ iff, for every obstacle o that is represented in C, the risk level for o in
C is at most the risk level for o in C ′ (defaulting to false if o is not represented in C ′).
Then when deciding whether to expand a state (u, C), instead of just checking whether
the exact state is closed, we check for every subset M ≤ C where |M | ≤ h, whether
any closed state at vertex u has a risk memory that M precedes. This works because
C ≤ C ′ implies that any future marginal cost starting from (u, C) would be at least the
future marginal cost starting from (u, C ′). This is effectively treating each state as a
collection of all states for that vertex with a preceding risk memory. Pseudocode for this
algorithm is provided in Algorithm 1. A step-by-step example of running a few steps of
this algorithm is described in Appendix B.

Algorithm 1 MEMORY SEARCH (Mh)

Input: Graph G = (V,E), obstacles O, end
points s, t, and collision horizon h.

Output: A trajectory from s to t through G.
1: closed = {}
2: open = PriorityQueue({(0, (s, [], {}))})
3: while not open.empty() do
4: // u is the configuration
5: // τ is the trajectory that reaches u
6: // C is the risk memory
7: // i.e. (obstacle, collision level) pairs
8: u, τ, C = open.pop()
9: if u = t then

10: return τ // Reached goal
11: // Check whether any closed state’s
12: // memory precedes C, or every

13: // subset of C of size at most h
14: // precedes the memory of some
15: // closed state
16: if (∄(w, C′′) ∈ closeds.t.w =

u, C′′ ≤ C) and (∃M ≤ C s.t. (|M | ≤
h and ∄ (w, C′′) ∈ closed s.t. w =
u,M ≤ C′′)) then

17: closed.insert(u, C)
18: // Add each outgoing edge to open
19: for v ∈ E[u] do
20: C′ = {(o,max(C[o], fo((u,v)))

for each o ∈ O}
21: open.insert(

∑
o∈O C′[o], (v, τ +

(u,v), C′))
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With k obstacles, L risk levels, and E edges, it can visit at most (kL)h unique states
for each vertex (since there are (kL)h potential memories of size h, and each additional
visited state corresponds to at least one new memory of size h that precedes the state’s
memory but none of the prior states’ memories), so it can query at most E(kL)h edges.
Since each edge can take O

((
k
h

)
(kL)hh

)
to check whether it can be skipped (for each

subset of size h, check against the memory for each visited state at that vertex, which
requires comparing h risk levels for each check), the overall algorithm runs in time
O
((

k
h

)
(kL)2hh2E log V kL

)
, which is polynomial when h is fixed. We provide a more

constrained runtime bound under certain conditions in Appendix E.
This algorithm correctly computes the cost of any trajectory segment that does not

incur correlated collision risk at points separated by more than h other obstacles. Thus,
the following theorem bounding the suboptimality of the algorithm holds.

Theorem 4. Let ϵ be the associated cost of the trajectory generated by Mh(G,O, s, t)
and let τ∗ be any optimal trajectory, with associated cost ϵ∗. Then

ϵ ≤
∑

o∈O,τi∈S
(τ∗)
o

fo(τi) ≤ ϵ∗ +
∑
o∈O

(|S(τ∗)
o | − 1)fo(τ∗)

where S
(τ∗)
o is the trajectory τ∗ split into the fewest segments such that for each τi ∈

S
(τ∗)
o , H(τi)

o ≤ h.

The proof for Theorem 4 is in Appendix D. And the following corollary holds when the
collision horizon is fixed.

Theorem 5. Mh returns an optimal trajectory when the collision horizon of the problem
is less than h.

Thus, the problem is tractable when the collision horizon is small, and when it is
unbounded, we have an algorithm that produces a solution whose suboptimality is
limited by how much the optimal trajectory exceeds a collision horizon of h. This bound
is especially helpful for domains where obstacle extents (i.e. the distribution over the
obstacle boundaries) have infinite support, because while the collision horizon of these
problems are large due to significant overlap of shadows, they impact the quality of the
solution only by the amount of change in risk level over the areas that interact with more
than h other obstacles, which is typically only the large, low-risk shadows. Hence, we
can still find a near-optimal solution. Some examples of the behavior of this algorithm
on different kinds of problems are in Figure 5.

3.1 Application to MCR

We would now like to consider the related problem of minimum constraint removal, or
the problem of finding a plan that collides with the smallest number of obstacles. This
problem was studied by Hauser [9], who presented two algorithms for solving it. The
first is an exact solver, which retains the set of past collisions in the state space of the
search, leading to optimal solutions but a potentially exponentially large search space.
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Fig. 5. An example where M0 is optimal (left) and one where it is suboptimal (right). The shading
indicates the obstacle shadows, so the probability a trajectory collides with a given obstacle is
given by the darkness of the maximally shaded point it goes through. In both cases the optimal
trajectory is the solid black line, which risks collision with the long obstacle at the bottom —even
though the trajectory on the right risks collision with the bottom obstacle twice, these collisions
are correlated (if the first “dip” is in collision, then so is the second, and vice versa), so the overall
collision risk is the same as on the left. However, in the suboptimal case, M0 will instead pick the
dotted subtrajectory, because by itself it is safer than the corresponding subpath of the optimal
trajectory. Hence, this problem instance has collision horizon 1, and so M1 will solve it correctly.

The other algorithm is a greedy solver, which is restricted to visiting each vertex at most
once. As a result, the greedy method is faster, but can be suboptimal in certain cases.

We so far have described an algorithm for planning under obstacle uncertainty.
However, as noted by Hauser [9] and by Shimanuki and Axelrod [25], there appear to be
strong connections between planning under obstacle uncertainty and minimum constraint
removal. In fact, a minimum constraint removal problem can be described as a planning
under obstacle uncertainty problem, where each obstacle only has a single shadow and a
fixed cost for colliding with it. Intuitively, this can be thought of as treating the objective
of minimizing collisions as equivalent to the objective of minimizing collision risk when
each obstacle has some fixed probability of existing.

As such, our algorithm can also be used to solve minimum constraint removal
problems. Moreover, M0 is equivalent to the greedy algorithm proposed by Hauser [9],
and M∞ is equivalent to his exact algorithm. Thus, the collision horizon parameter of
our algorithm can be seen as interpolating between the greedy and exact algorithms,
providing a tradeoff between optimality and runtime based on the application.

4 Empirical Results
In this section we compare our algorithm to various baselines and illustrate how the
collision horizon parameter infuences behavior. We consider two baselines: First, we
implemented the naive and commonly used approach of setting all the shadows to
be equal, often referred to as constructing buffers, and then we ran a normal motion
planner on it. Our implementation iteratively adapts the buffer size to select the small-
est risk level that allows a solution. Second, we compare to a method proposed by
Hauser [9] which samples obstacle instances from the distribution and then uses an
approximate minimum constraint removal planner to find the path that collides with
the fewest sampled obstacles. Note that avoiding 90% of samples does not guarantee
a collision rate of less than 10%. In fact, the number of samples required for such
an empirical collision rate estimate to be useful is quite large and depends on the di-
mension of the space. As such, we slightly modify it to construct each shadow as an
individual obstacle rather than sampling actual obstacle instances. This ensures the sound-
ness of the algorithm while also reducing the runtime due to needing fewer obstacles.
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Fig. 6. The robot is tasked to pick up
the red box and carry it out of the room
through the hallway at the top. The
green boxes (of which there are 8 to
24) have known position but Gaussian
distributed extents. This is then dis-
cretized into shadows for 3 risk levels.

4.1 Moving Boxes Domain

Our first domain is a pick-and-place motion plan-
ning problem among uncertain obstacles. An exam-
ple problem instance is depicted in Figure 6. We
sample approximately 600 robot base poses and
draw edges to form a graph embedded in the config-
uration space of the robot base. We then sample up
to 4 feasible grasps, each of which creates an edge
to a copy of the original graph (a copy is necessary
because the collisions at each node are different
based on whether the robot is holding a box and
how it is grasping it). The performance of each
method on this domain is compared in Figure 7. We
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Fig. 7. The optimality rate (percent of problem instances where the algorithm returns an optimal
solution), runtime, and planning risk of each method. Runtime and cost are depicted as the
difference compared to the optimal planner M24 to control for the variance in difficulty of different
problem instances. Note that the Equal Buffers algorithm, which assigns equal risk to every
obstacle, was not able to find the optimal solution in any problem instance.

also measured the effect of the collision horizon on these performance metrics, depicted
in Figure 8. We find that our algorithm is already near-optimal at h = 0, and the gap
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Fig. 8. The optimality, runtime, and planning risk of Mh for each collision horizon. Runtime and
cost are depicted as the difference compared to the optimal planner M24 to control for the variance
in difficulty of different problem instances. Increasing the collision horizon past 6 up to 24 shows
no noticeable change in behavior, so we have cropped the graphs for clarity.
becomes entirely closed with h = 1. This suggests that this domain tends to have a very
small collision horizon. The obstacle-sampling approach behaves similarly to M0, which
is unsurprising since the minimum constraint removal planner used is equivalent to M0.
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The MCR algorithm runs slower, however, because it cannot take advantage of the fact
that the obstacles correspond to quantile shadows. Setting the shadows to be equal is
a fast solution, but is very suboptimal. Overall, M1 appears to be the most generally
attractive, as it is optimal in every instance and slightly faster than the exact search. We
also notice that the runtime did not increase with h as much as we would expect. We
speculate as to why this might be the case and analyze conditions under which we would
expect similar behavior in Appendix E.

4.2 Additional Experiments

In Appendix A we present similar results in an autonomous driving domain and in a
MCR domain similar to the above manipulation problem.

5 Conclusion and Future Work

We show that while searching a graph for minimal risk plans is NP-hard, it becomes
tractable when the collision horizon is bounded. Furthermore, there is a practical
algorithm that efficiently finds optimal plans for fixed collision horizon, and finds
approximately-optimal plans with a natural suboptimality bound when the collision hori-
zon is higher. This demonstrates that approximate planning under obstacle uncertainty is
tractable in practical domains, which can lead to improved robustness in many robotic
planning domains. Furthermore, it shows that the collision horizon is the source of the
hardness of the problem, modeling a pattern for improvements in other settings.

A potential direction for future work would be to further explore the relationship
between the collision horizon and the hardness of the problem. In particular, our result
provides a runtime with n in the base of the exponential dependency on the collision hori-
zon, placing it in the complexity class XP instead of FPT (fixed-parameter tractability),
which would require a runtime of the form f(h)poly(n). Either finding more efficient
algorithms that reduce the exponential runtime to one with a fixed base, ideally some-
thing like 2h rather than the nh our algorithm has, or showing that such an algorithm
does not exist would further our understanding of the nature of these problems.

Another limitation is that our algorithm operates on problems with discrete risk
levels. While we can always discretize obstacles based on the precision required, the
number of risk levels has a substantial effect on runtime, especially with higher collision
horizons. A line of future work would be to generalize this approach to continuous
notion of risk levels.

Finally, we have shown that some realistic domains tend to have small collision
horizons. An interesting open question is what determines this, and whether we can
define special classes of problems that have provably fixed collision horizon. Generally
it will come down to either the distance between sections of task space a single obstacle
might occupy or how much the solution requires the robot to backtrack in the same
section of task space. For example, we expect that many movable-base navigation
problems with small obstacles will also have small collision horizons since the robot
would not need to revisit any previously visited areas. On the other hand, long-horizon
manipulation problems may exhibit unbounded collision horizon since each motion
might revisit the same area. Additionally, problems with moving obstacles may also
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have high collision horizon since each obstacle can interact with the robot at multiple
different points along a planned trajectory. Unfortunately, it is not clear how to determine
the collision horizon of a given problem without knowing the optimal solution. Another
potential direction for future work would be to show whether this is tractable or NP-hard.
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A Additional Experiments

A.1 Driving Domain

We also evaluate our method on a driving domain. In this problem, the vehicle is
attempting to make an unprotected left turn, and there is both cross and oncoming traffic.
An example of this domain is depicted in Figure 9.

Fig. 9. The robot (blue trapezoidal vehicle) making an unprotected left turn along the dotted white
curve. Each obstacle (red rounded vehicles) exists in space-time and has uncertain speed. There is
cross traffic going to the right blocking the robot’s path before entering the intersection, oncoming
traffic going downwards blocking the robot’s path before exiting the intersection, and an obstacle
vehicle in front. The robot must choose when it is safest to cut between vehicles, keeping in mind
that going too fast risks collision with the front vehicle. There are a total of 12 obstacle vehicles.

The geometric curve the vehicle will follow is fixed, but the vehicle has the option
to proceed forward or wait at each timestep. Hence, the graph is a 2D lattice where
one dimension is progress along the curve (40 steps) and the other dimension is time
(100 timesteps). This graph is fed as input to the graph search algorithms, each of
which returns a trajectory that indicates when the robot should be moving and when
it should be stopping. Practically speaking, a solution trajectory makes two choices:
which vehicles to cut between when entering the intersection, and which vehicles to cut
between when leaving the intersection. The performance of these methods are compared
in Figure 10. We also measured the effect of the collision horizon on these performance
metrics, depicted in Figure 11. We find that M0 and running MCR on sampled obstacles
produce plans of similar quality, although M0 is significantly faster. As before, setting
the shadows to be equal is suboptimal in nearly all of the problems in this domain
because there are too many obstacles, so it must choose an overly conservative shadow
for each one. Overall, M1 appears to be the most generally attractive option, as it is
optimal in every instance, although in this domain increasing the collision horizon does
not appear to increase runtime significantly.
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Fig. 10. The optimality rate (percent of problem instances where the algorithm returns an optimal
solution), runtime, and planning risk of each method. Runtime and cost are depicted as the
difference compared to the optimal planner M12 to control for the variance between problem
instances.
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Fig. 11. The optimality and planning risk of Mh for each collision horizon. Cost is depicted as the
percent difference compared to the optimal planner M12 to control for the variance in difficulty
between problem instances. There was no significant difference in runtime across different values
of h, so the runtime graph is omitted. Increasing the collision horizon past 6 shows no noticeable
change in behavior, so we have cropped the graphs for clarity.
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A.2 Minimum Constraint Removal for Manipulation Planning
We also evaluate our algorithm as a minimum constraint removal planner. Our experimen-
tal domain is identical to the one in Section 4.1, but the obstacles are deterministic and
the task is instead to find the path with the fewest collisions. This task is very practically
relevant in manipulation planning domains to determine which obstacles must be moved
out of the way in order to perform a given operation.

As described before, Hauser [9] presented two algorithms, a greedy planner and
an exact planner, which are equivalent to M0 and M24, respectively (note that M24 is
equivalent to M∞ when there are at most 24 obstacles). Our algorithm is compared for
different settings of the collision horizon in Figure 12.
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Fig. 12. The optimality, runtime, and planning risk of Mh for each collision horizon. Runtime
and cost are depicted as the difference compared to the optimal planner M24 to control for the
variance in difficulty of different problem instances. Increasing the collision horizon past 6 up to
24 shows no noticeable change in behavior, so we have cropped the graphs for clarity.

Similar to minimum-risk planning, we find that M0 is already near optimal, and that
M1 closes the gap. As a result, it is unclear whether the collision horizon is bounded
for this domain, or if it is just highly likely to be small. As before, M1 strikes a good
balance of optimal performance and quick runtime.

B Step-by-step Example of Algorithm

B.1 Problem Setup
Here we walk through a step-by-step example of running Algorithm 1 on a small problem.
Suppose we have a graph with vertices v1, v2, v3, v4 and edges

e1 = (v1,v2)

e2 = (v1,v3)

e3 = (v2,v3)

e4 = (v3,v4)

e5 = (v3,v2)

(1)

Then let there be 2 obstacles o1 and o2, each with two risk levels of .01 and .05, where

fo1({e1}) = fo1({e3}) = fo1({e4}) = fo1({e5}) = .05

fo1({e2}) = fo1({e4}) = 0

fo2({e2}) = .01

fo2({e1}) = fo2({e3}) = fo2({e4}) = 0

(2)
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B.2 Algorithm Execution

We will now walk through M1 starting at s = v1 and ending at t = v4. The referenced
psudeocode may be found in Algorithm 1.

Iteration 1 We start with an empty closed set (line 1) and an open set containing the
start vertex v1 (line 2). When we enter the main loop (line 3), we assign u = v1 with
empty τ and C (line 8). u ̸= t, and so we do not end here (line 9).

Now we get to line 16. The closed set is empty, and so the first clause evaluates to
true since there does not exist any (w, C ′′) in closed. For the second clause, we can
set M = {} ≤ C, which satisfies |M | ≤ 1 and also there not existing any (w, C ′′) in
closed. Hence, the overall predicate evaluates to true.

We then add (v1, {}) to the closed set (line 17). For outgoing edge e1 (line 19),
we set C ′ = {(o1, .05)} (line 20) and add (v2, [e1], C

′) to the open set with key .05
(line 21). For outgoing edge e2 (line 19), we set C ′ = {(o2, .01)} (line 20) and add
(v3, [e2], C

′) to the open set with key .01 (line 21).
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.01

.05

Fig. 13. End of iteration 1.

The set of closed states at the end of this iteration is depicted in Figure 13.

Iteration 2 Now we come back to the top of the main loop (line 3). We assign u = v3

with τ = [e2] and C = {o2, .01} (line 8). u ̸= t, and so we do not end here (line 9).
There is no closed state at vertex v3, and so the predicate evaluates to true (line 16).
We then add (v3, {(o2, .01)}) to the closed set (line 17). For outgoing edge e4 (line

19), we set C ′ = {(o1, .05), (o2, .01)} (line 20) and add (v4, [e2, e4], C
′) to the open set

with key .06 (line 21). For outgoing edge e5 (line 19), we set C ′ = {(o1, .05), (o2, .01)}
(line 20) and add (v2, [e2, e5], C

′) to the open set with key .06 (line 21).
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Fig. 14. End of iteration 2.

The set of closed states at the end of this iteration is depicted in Figure 14.

Iteration 3 We come back to the top of the main loop (line 3). We assign u = v2 with
τ = [e1] and C = {o1, .05} (line 8). u ̸= t, and so we do not end here (line 9).

There is no closed state at vertex v2, and so the predicate evaluates to true (line 16).
We then add (v2, {(o1, .05)}) to the closed set (line 17). For outgoing edge e3 (line

19), we set C ′ = {(o1, .05)} (line 20) and add (v3, [e1, e3], C
′) to the open set with key

.05 (line 21).
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Fig. 15. End of iteration 3.

The set of closed states at the end of this iteration is depicted in Figure 15.



22 Brian Axelrod and Luke Shimanuki

Iteration 4 Now we come back to the top of the main loop (line 3). We assign u = v3

with τ = [e1, e3] and C = {o1, .05} (line 8). u ̸= t, and so we do not end here (line 9).

There is only closed state (v3, {(o2, .01)}) at vertex v3. {(o2, .01)} ̸≤ C and we
can set M = C satisfying |M | ≤ 1 and M ̸≤ {(o2, .01)}. Therefore, the predicate
evaluates to true (line 16).

We then add (v3, {(o1, .05)}) to the closed set (line 17). For outgoing edge e4 (line
19), we set C ′ = {(o1, .05)} (line 20) and add (v4, [e1, e3, e4], C

′) to the open set with
key .05 (line 21). For outgoing edge e5 (line 19), we set C ′ = {(o1, .05)} (line 20) and
add (v2, [e1, e3, e5], C

′) to the open set with key .05 (line 21).
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Fig. 16. End of iteration 4.

The set of closed states at the end of this iteration is depicted in Figure 16.

Iteration 5 We come back to the top of the main loop (line 3). We assign u = v2 with
τ = [e1, e3, e5] and C = {o1, .05} (line 8). u ̸= t, and so we do not end here (line 9).

There is only closed state (v2, {(o1, .05)}) at vertex v3. {(o1, .05)} ≤ C and so the
predicate evaluates to false (line 16).

Because we did not need to expand this state, the closed set remains unchanged, and
so it is still as depicted in Figure 16.

Iteration 6 Finally, we reach the top of the main loop (line 3) with u = v4, τ =
[e1, e3, e4] and C = {o1, .05} (line 8). u = t, and so we return the solution [e1, e3, e4]
(line 9).
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Fig. 17. End of iteration 6.

The set of closed states at the end of this iteration is depicted in Figure 17.

C Theoretical Guarantees for Motion Planning

While motion planning has been shown to be PSPACE-hard [23], the community has
developed algorithms which are able to solve many practical motion planning problems.
Even though we cannot guarantee that any algorithm is both efficient (polynomial time)
and complete (guaranteed to find a solution), we can provide lighter guarantees. The
goal of this section is to provide background on different theoretical guarantees relevant
to motion planning with obstacle uncertainty.

C.1 Completeness

An algorithm is said to be complete if it is always able to find a solution if one exists.
Unfortunately, many algorithms which depend on heuristics are not complete and can
fail in certain scenarios. For example, optimization based motion planners can fail to
find a solution if they are not initialized with a trajectory whose homotopy class contains
a valid trajectory.

When working with sampling based motion planners, we work with a criteria known
as probabilistic completness, a property introduced with the RRT algorithm [16]. While
we cannot guarantee that any algorithm efficiently returns a valid solution if one exists,
we can ensure the algorithm is probabilistically complete.

Definition 9 (Probabilistically Complete Motion Planning Algorithm). A motion
planning algorithm takes a set of obstacles, a start state s, and a goal state t as input
and generates a trajectory that does not intersect any obstacle as output. A planning
algorithm is probabilistically complete if, with n samples, the probability that it finds a
safe trajectory approaches 1 as n approaches ∞.
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Probabilistic completeness essentially means the algorithm will eventually find a solution
if one exists.

Many sampling based algorithms, including RRTs, guarantee probabilistic complete-
ness as long as there exists a solution that meets certain conditions. In particular, RRTs
and many other sampling based motion planners are only probabilistically complete if
there exists a solution trajectory in the topological interior of free configuration space.
Since a similar condition is necessary for the algorithm presented in this paper, we
develop this condition without explicitly relying on topology below.

This condition can be articulated as the existence of a path in the δ-interior of the
free space Xfree where Xfree is a bounded subset of Rn.

Definition 10 (δ-interior [13]). A state x ∈ Xfree is in the δ-interior of Xfree if the
closed ball of radius δ around x lies entirely in Xfree.

A sampling based algorithm can only succeed if it always has a non-zero probability of
sampling a waypoint leading to more progress. One way to ensure this is requiring the
existence of a solution where every waypoint has a ball of nonzero diameter around it,
guaranteeing that said ball has non-zero measure and the algorithm will eventually draw
a sample in said ball.

When there exists a path in the δ-interior of free space for some δ > 0, many sampling
based motion planners are probabilistically complete. However this formulation does not
extend well to the domain with uncertain obstacles; there is no concept of “free space”
because the locations of the obstacles are not known. Instead we will use the equivalent
view of inflating the path instead of shrinking the free space.

Definition 11 (δ-inflation). The δ-inflation of the set X is the set Y =
⋃

x∈X

{y |

d(x, y) ≤ δ}, where d(x, y) is any distance metric.

We note that in the deterministic setting, if a trajectory is in the δ-interior of Xfree,
then the δ-inflation of the trajectory is entirely in Xfree. This allows us to consider
problems with the following regularity condition: there exists a δ-inflated trajectory that
has a low risk of collision.

Definition 12 (ϵ-safe δ-inflated trajectory). A trajectory τ is an ϵ-safe δ-inflated tra-
jectory if its δ-inflation intersects an obstacle with probability at most ϵ.

While the standard RRT requires the existence of a trajectory in the interior of free
space in order to be probabilistically complete, the algorithm in this paper requires the
existence of an ϵ−safe δ−inflated trajectory in order to be probabilistically complete.

C.2 Graph Restriction Hardness

When solving motion planning without uncertainty, once the algorithm has identified
a graph that contains a solution, the problem is essentially solved. Algorithms like
Djikstra’s algorithm and A⋆ can be applied out of the box to find the minimum cost path
within said graph.

We refer to the hardness of finding a solution restricted to a graph the graph restriction
complexity of a problem. Since we can apply Djikstra’s algorithm to solve motion



Efficient Motion Planning under Obstacle Uncertainty with Local Dependencies 25

planning without uncertainty, the graph restriction complexity is P . This is crucial to
enabling the fast solving of motion planning in practice. Sampling based planners tackle
the problem in two [sometimes alternating] phases. The first phase involves sampling a
graph. The second involves checking if the graph contains a solution, and finding the
lowest cost one if it does. Motion planning problems that are “easy” for sampling based
planners are ones where the first phase is easy. The hardness of the second phase is
exactly the graph restriction complexity.

One could hope that with the right approximations, a similar pattern could work
for motion planning with obstacle uncertainty. In [3], the authors develop a notion of
confidence intervals around obstacles with the aim of using them as an approximation
enabling efficient planning. Unfortunately, the graph restriction complexity of planning
with obstacle uncertainty with shadows is still NP-hard, even in two dimensions [25]. In
other words, even if you are able to efficiently identify a graph containing the solution, it
is not easy to find the solution in this graph unless P=NP.

This paper presents an algorithm that shows that the graph-restriction complexity
of MRMP is P when the collision horizon is constant. Under these conditions, the
same paradigm as for standard motion planning applies. One can sample a graph in
configuration space just like with a standard sampling based motion planner and then
use the presented graph search algorithm in order to solve MRMP. This allows us to
adapt the standard sampling based motion planners to be able to solve MRMP.

D Proofs

Proof of Theorem 4:

Proof. Let ϵ be the associated cost of the trajectory generated by Mh(G,O, s, t) and let
τ∗ be any optimal trajectory, with associated cost ϵ∗. Because each obstacle is distributed
independently from other obstacles, we begin by considering the risk incurred by each
one separately. For a given obstacle o, suppose S

(τ∗)
o is the trajectory τ∗ split into the

fewest segments such that for each τi ∈ S
(τ∗)
o , H(τi)

o ≤ h. For each time τi enters an
obstacle level with edge (u, v), the planning tree generated by Mh must contain a state
ŝu at vertex u with memory containing the preceding h collisions in τi since such a state
is reachable (given that τi reaches it) and would not be skipped unless another previously
closed state at u already contained the preceding h collisions. Because H

(τi)
o ≤ h, we

know that the preceding h collisions are sufficient to determine the marginal risk of each
collision. Then Mh will at some point expand edge (ŝu, ŝv), where ŝv is the state at
vertex v still with memory containing the preceding h collisions in τi and with cost from
o no more than fo(τi). Hence, Mh computes the marginal risk of this obstacle for this
subtrajectory correctly. Then the total computed risk from obstacle o for trajectory τ∗ is
at most ∑

τi∈S
(τ∗)
o

fo(τi)

Hence, the algorithm would assign the overall risk of trajectory τ∗ as at most

ϵ̃ ≤
∑

o∈O,τi∈S
(τ∗)
o

fo(τi)
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Because Mh greedily expands nodes in order of computed cost, it would only select a
different trajectory if its computed cost ϵ̂ ≤ ϵ̃. We know that Mh can only overestimate
the cost of a trajectory (due to not taking into account the optimal set of past collisions),
not underestimate, so the cost of the trajectory it returns is at most ϵ̂. Finally, since
fo(τ∗) = max

τi∈S
(τ∗)
o

fo(τi) and

ϵ∗ =
∑
o∈O

fo(τ∗) =
∑
o∈O

max
τi∈S

(τ∗)
o

fo(τi)

we are left with the following bound:

ϵ ≤ ϵ̂ ≤ ϵ̃ ≤ ϵ∗ +
∑
o∈O

(|S(τ∗)
o | − 1)fo(τ∗)

E Additional Runtime Analysis

Although the runtime of the exact algorithm (i.e. Mk) has poor asymptotic complexity
according to our analysis, in our experiments we observe that in practice it seems to not
be that much slower than the approximate versions. We would like to investigate why
that would be the case, since it is a surprising result.

We define an extension of the irreducible constraint removal (ICR) defined by Hauser
[9] for MCR domains.

Definition 13 (minimal reachable memory (MRM)). A memory C is a minimal reach-
able memory for a configuration u if there exists a trajectory from the initial configuration
s to u that does not collide with any shadow not in C, and there is no lower memory
C ′ < C such that there exists such a trajectory that does not collide with any shadow
not in C ′.

Hauser [9] observe that the pruning of non-ICR states eliminates a large number of states,
leading to practical efficiency for many MCR problem instances. In our algorithm, we
prune non-MRM states (note that when using our algorithm as an MCR planner, this is
equivalent to pruning of non-ICR states), so we would like to quantify how much of an
effect the pruning has on the overall runtime.

Let U denote the set of risk memories associated with all states for configuration
u that are expanded by Mk. Suppose C1, C2 ∈ U , and Mk expanded C1 before C2. If
C1 ≤ C2, then C2 would not have been expanded since (u, C2) is a strictly worse state
than (u, C1), hence a contradiction. But if C2 ≤ C1, then C2 would have been expanded
before C1, which is also a contradiction. Therefore, C1 and C2 are incomparable, and so
U is an antichain.

For the purpose of simplifying the following math, we will continue only for the case
where L = 1 (i.e. equivalent to MCR), but we believe the general orders of magnitude
of the effect to be similar for larger L. In this case, the maximum antichain is the set
of subsets of size k

2 , which has size
(
k
k
2

)
. However, the actual antichain the algorithm

produces is usually much smaller.
One reason is that it selects ICR sets rather than those in the maximum antichain.

If most ICR sets have size approximately λ, then the size of U would be reduced to
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approximately
(
k
λ

)
. This is the extent of the effect of pruning on the runtime, and it does

not appear to sufficiently explain the low runtime we see in practice (in the boxes MCR
domain, we see typical ICR sizes of on the order of around 8, which would still suggest
a hundreds-of-thousands-fold runtime multiplier over the greedy algorithm).

We speculate that the topology of the obstacle placements induce additional con-
straints on which memories are reachable. For example, if the obstacles are arranged
into a 2D grid, you would not be able to reach a shadow in the corner without also
reaching some set of shadows in-between. Computational experiments suggest that this
would reduce the size of U to a manageable number for the size of problems we have
shown here, Exact counts for an MCR domain where s and t are δ cells apart and the
algorithm is limited to reaching ∆ obstacles (e.g. due to the algorithm terminating upon
reaching the goal by passing through ∆ obstacles) shown in the below table. Beyond the
boundaries of the table, we expect that the size of U has asymptotic complexity at least
o
(
δpoly(∆−δ)

)
.

∆
8 9 10 11 12

6 31 31 203 203 823
7 1 43 43 375 375

δ 8 1 1 57 57 647
9 0 1 1 73 73

10 0 0 1 1 91

We expect the boxes domain to exhibit similar properties due to the dense placement
of the obstacles (we estimate that in the boxes MCR domain the goal is reached with cost
around 10 and the average obstacle is reached with cost around 8), although likely in
an inexact manner. A potential line of future work could be to analytically quantify the
impact of the obstacle topology on the runtime of the algorithm, and determine whether
that sufficiently explains the empirically low runtime we have observed. Additionally,
it would be helpful to evaluate the runtime of our algorithm on problems where δ and
∆ − δ are much larger to see if it continues to be efficient. This would also provide
further intuition as to what is driving the hardness of the general problem, and which
special cases can be solved efficiently when an exact solution is required and the collision
horizon is unknown.
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